246 research outputs found

    Adiabatic demagnetization refrigeration to millikelvin temperatures with the distorted square lattice magnet NaYbGeO4

    Get PDF
    We report the synthesis, characterization, low-temperature magnetic, and thermodynamic measurements of the millikelvin adiabatic demagnetization refrigeration (mK-ADR) candidate material NaYbGeO4 which exhibits a distorted square lattice arrangement of YbO6 magnetic units. Magnetization and specific heat indicate weakly interacting effective spin-1/2 moments below 10 K, with a Curie-Weiss temperature of only 15 mK, that can be polarized by magnetic fields of order 1 T. For the ADR performance test, we start the demagnetization from 5 T at a temperature of ∼2K and reach a minimum temperature of 150 mK at zero field. The warming curve indicates a sharp magnetic transition in the heat capacity at 210 mK, implying only weak magnetic frustration. The entropy density of SGS≃101 mJK−1cm-3 and hold time below 2 K of 220 min are competitive while the minimal temperature is higher compared to frustrated Ytterbium-oxide ADR materials studied under similar conditions

    Efficient adiabatic demagnetization refrigeration to below 50 mK with UHV compatible Ytterbium diphosphates AAYbP2_2O7_7 (A=A=Na, K)

    Get PDF
    Attaining milli-Kelvin temperatures is often a prerequisite for the study of novel quantum phenomena and the operation of quantum devices. Adiabatic demagnetization refrigeration (ADR) is an effective, easy and sustainable alternative to evaporation or dilution cooling with the rare and super-expensive 3^3He. Paramagnetic salts, traditionally used for mK-ADR, suffer from chemical instability related to water of crystallization. We report synthesis, characterization as well as low-temperature magnetization and specific heat measurements of two new UHV compatible candidate materials NaYbP2_2O7_7 and KYbP2_2O7_7. Utilizing the PPMS at 2 K, the ADR of sintered pellets with Ag powder admixture starting at 5 T yields base temperatures (warm-up times) of 45 mK (55 min) and 37 mK (35 min) for NaYbP2_2O7_7 and KYbP2_2O7_7, respectively, slightly advantageous to KBaYb(BO3_3)2_2 (45 mK and 40 min) studied under similar conditions.Comment: 9 pages, 7 figure

    Liver Transplantation for Advanced Liver Disease with Alpha-1antitrypsin Deficiency

    Get PDF
    ALPHA-1-antitrypsin deficiency associated with chronic obstructive airway disease was recognized in 1963 by Laurell and Ericksson.1 In 1969, Sharp2 described the first cases of alpha-1-antitrypsin-deficiency disease in children with cirrhosis. Since then, this inborn error has been recognized as one of the more common factors in cirrhosis of infancy and childhood,3 including “neonatal hepatitis.”4 Alpha-1-antitrypsin is a glycoprotein that accounts for a major portion of the alpha-1 globulin fraction of the serum.5 It is responsible for approximately 90 per cent of the antitrypsin activity6 of the serum, and it also inhibits several other plasma enzymes, including plasmin,7 elastase,8 collagenase,9 and. © 1980, Massachusetts Medical Society. All rights reserved

    Z2_2 topology and superconductivity from symmetry lowering of a 3D Dirac Metal Au2_2Pb

    Full text link
    3D Dirac semi-metals (DSMs) are materials that have massless Dirac electrons and exhibit exotic physical properties It has been suggested that structurally distorting a DSM can create a Topological Insulator (TI), but this has not yet been experimentally verified. Furthermore, quasiparticle excitations known as Majorana Fermions have been theoretically proposed to exist in materials that exhibit superconductivity and topological surface states. Here we show that the cubic Laves phase Au2_2Pb has a bulk Dirac cone above 100 K that gaps out upon cooling at a structural phase transition to create a topologically non trivial phase that superconducts below 1.2 K. The nontrivial Z2_2 = -1 invariant in the low temperature phase indicates that Au2_2Pb in its superconducting state must have topological surface states. These characteristics make Au2_2Pb a unique platform for studying the transition between bulk Dirac electrons and topological surface states as well as studying the interaction of superconductivity with topological surface states

    Quantum Tricritical Points in NbFe2_2

    Get PDF
    Quantum critical points (QCPs) emerge when a 2nd order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to 1st order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2_2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite qq susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generally near a buried FM QCP of this type. Our results promote NbFe2_2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2_2Si2_2.Comment: 21 pages including S
    corecore