94 research outputs found

    Development and Congenital Anomalies of the Pancreas

    Get PDF
    Understanding how the pancreas develops is essential to understand the pathogenesis of congenital pancreatic anomalies. Recent studies have shown the advantages of investigating the development of frogs, mice, and chickens for understanding early embryonic development of the pancreas and congenital anomalies, such as choledochal cysts, anomalous pancreaticobiliary junction, annular pancreas, and pancreas divisum. These anomalies arise from failure of complete rotation and fusion during embryogenesis. There are many theories in the etiology of congenital anomalies of the pancreas. We review pancreas development in humans and other vertebrates. In addition, we attempt to clarify how developmental failure is related to congenital pancreatic anomalies

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications

    Two distinct pathways of p16 gene inactivation in gallbladder cancer

    No full text

    The effects of dipeptidyl peptidase-4 on cardiac fibrosis in pressure overload-induced heart failure

    No full text
    Dipeptidyl peptidase-4 (DPP-4) inhibitors are hypoglycemic agents. DPP-4 inhibitor has cardioprotective effects after transverse aortic constriction (TAC), but role of DPP-4 on cardiac fibrosis after TAC is not well known. Our aim was to determine the effects of DPP-4 on cardiac fibrosis in murine TAC model. Wild-type mice and DPP-4 knockout mice were subjected to TAC. Wild-type mice were then treated with vehicle or DPP-4 inhibitor. DPP-4 activities in serum and heart tissue were significantly increased at 2 weeks after TAC, but they were significantly decreased by DPP-4 inhibitor treatment. The inhibition of DPP-4 did not affect left ventricular hypertrophy, but improved cardiac function and decreased myocardial and perivascular fibrosis after TAC. The inhibition of DPP-4 decreased the collagen type III/I ratio in myocardium. These results suggest that DPP-4 inhibition ameliorates the progression of heart failure after TAC by changing the quality and quantity of cardiac fibrosis
    corecore