12 research outputs found

    Novel η 3

    No full text

    Reactions of Tungsten Acetylide–Silylene Complexes with Pyridines: Direct Observation of Silylene/Silyl Migration in Tungsten Acetylide and Carbyne/Vinylidene Frameworks

    No full text
    Reaction of acetylide–silylene complex Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>)­(CC<sup><i>t</i></sup>Bu) (<b>1a</b>) with 4-(dimethylamino)­pyridine (DMAP) gave an equilibrium mixture of DMAP-stabilized silylene acetylide complexes <i>trans-</i> and <i>cis</i>-Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>·DMAP)­(CC<sup><i>t</i></sup>Bu) (<i><b>trans</b></i><b>-4</b> and <i><b>cis</b></i><b>-4</b>). The corresponding reaction using Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>)­(CCSiMe<sub>3</sub>) (<b>2</b>) produced the novel DMAP-coordinated silenylcarbyne/silylvinylidene complex Cp*­(CO)<sub>2</sub>W­[CC­(SiPh<sub>2</sub>·DMAP)­(SiMe<sub>3</sub>)] (<b>6a</b>) as a major product, which was equilibrated with <i>trans-</i> and <i>cis</i>-Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>·DMAP)­(CCSiMe<sub>3</sub>) (<i><b>trans</b></i><b>-5a</b> and <i><b>cis</b></i><b>-5a</b>) via silylene/silyl migration. The novel structures of <i><b>cis</b></i><b>-4</b> and <b>6a</b> were revealed by X-ray crystallography. A mixture of <b>2</b> and pyridine exhibited interesting temperature-dependent NMR spectral changes, indicating the formation of <i>trans-</i> and <i>cis</i>-Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>·py)­(CCSiMe<sub>3</sub>) (<i><b>trans</b></i><b>-5b</b> and <i><b>cis</b></i><b>-5b</b>) and Cp*­(CO)<sub>2</sub>W­[CC­(SiPh<sub>2</sub>·py)­(SiMe<sub>3</sub>)] (<b>6b</b>) at low temperature, while a mixture of <b>1a</b> and pyridine showed no such spectral changes

    Reaction of Cp*(CO) 2

    No full text

    Reactions of Tungsten Acetylide–Silylene Complexes with Pyridines: Direct Observation of Silylene/Silyl Migration in Tungsten Acetylide and Carbyne/Vinylidene Frameworks

    No full text
    Reaction of acetylide–silylene complex Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>)­(CC<sup><i>t</i></sup>Bu) (<b>1a</b>) with 4-(dimethylamino)­pyridine (DMAP) gave an equilibrium mixture of DMAP-stabilized silylene acetylide complexes <i>trans-</i> and <i>cis</i>-Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>·DMAP)­(CC<sup><i>t</i></sup>Bu) (<i><b>trans</b></i><b>-4</b> and <i><b>cis</b></i><b>-4</b>). The corresponding reaction using Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>)­(CCSiMe<sub>3</sub>) (<b>2</b>) produced the novel DMAP-coordinated silenylcarbyne/silylvinylidene complex Cp*­(CO)<sub>2</sub>W­[CC­(SiPh<sub>2</sub>·DMAP)­(SiMe<sub>3</sub>)] (<b>6a</b>) as a major product, which was equilibrated with <i>trans-</i> and <i>cis</i>-Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>·DMAP)­(CCSiMe<sub>3</sub>) (<i><b>trans</b></i><b>-5a</b> and <i><b>cis</b></i><b>-5a</b>) via silylene/silyl migration. The novel structures of <i><b>cis</b></i><b>-4</b> and <b>6a</b> were revealed by X-ray crystallography. A mixture of <b>2</b> and pyridine exhibited interesting temperature-dependent NMR spectral changes, indicating the formation of <i>trans-</i> and <i>cis</i>-Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>·py)­(CCSiMe<sub>3</sub>) (<i><b>trans</b></i><b>-5b</b> and <i><b>cis</b></i><b>-5b</b>) and Cp*­(CO)<sub>2</sub>W­[CC­(SiPh<sub>2</sub>·py)­(SiMe<sub>3</sub>)] (<b>6b</b>) at low temperature, while a mixture of <b>1a</b> and pyridine showed no such spectral changes

    Synthesis, Structure, and Reactivity of Tungsten Acetylide–Germylene Complexes

    No full text
    The novel acetylide–germylene complexes Cp*­(CO)<sub>2</sub>W­(GePh<sub>2</sub>)­(CCR) (<b>7a</b>, R = SiMe<sub>3</sub>; <b>7b</b>, R = CMe<sub>3</sub>) were synthesized by the reactions of Cp*­(CO)<sub>2</sub>W­(NCMe)­Me with Ph<sub>2</sub>HGeCCR (R = SiMe<sub>3</sub>, CMe<sub>3</sub>). X-ray crystal analysis of <b>7a</b> revealed significantly increased germylene–tungsten and decreased germylene–acetylide interactions in comparison to the corresponding interactions in the previously reported acetylide–silylene complex Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>)­(CCSiMe<sub>3</sub>) (<b>1</b>). Complexes <b>7a</b>,<b>b</b> reacted with acetone to give the six-membered cyclic vinylidene complexes Cp*­(CO)<sub>2</sub>WCC­(R)­CMe<sub>2</sub>OGePh<sub>2</sub> (<b>8a</b>, R = SiMe<sub>3</sub>; <b>8b</b>, R = CMe<sub>3</sub>) by acetone insertion reaction, similar to the case of <b>1</b> affording Cp*­(CO)<sub>2</sub>WCC­(SiMe<sub>3</sub>)­CMe<sub>2</sub>OSiPh<sub>2</sub> (<b>2</b>). In the presence of 4-(dimethylamino)­pyridine (DMAP), complexes <b>8a</b>,<b>b</b> gave <i>trans</i>- and <i>cis</i>-DMAP-stabilized germylene acetylide complexes Cp*­(CO)<sub>2</sub>W­(GePh<sub>2</sub>·DMAP)­(CCR) (<i><b>trans</b></i><b>-</b> and <i><b>cis</b></i><b>-9a</b>, R = SiMe<sub>3</sub>; <i><b>trans</b></i><b>-</b> and <i><b>cis</b></i><b>-9b</b>, R = CMe<sub>3</sub>) and acetone, showing a reactivity different from that of the silicon analogue <b>2</b>. Complexes <i><b>cis-</b></i><b>9a,b</b> were isolated as crystals from the reaction of <b>7a,b</b> with DMAP and formed mixtures with <i><b>trans</b></i><b>-9a,b</b> in solutions, respectively. A mixture of <b><i>cis</i>-</b> and <b><i>trans</i>-9a</b> reacted with acetone to form an equilibrium mixture with <b>8a</b> and DMAP. The reactivity of <b>7a</b>,<b>b</b> toward Me<sub>3</sub>COH was also investigated to reveal the formation of the vinylidene complexes Cp*­(CO)<sub>2</sub>W­{GePh<sub>2</sub>(OCMe<sub>3</sub>)}CCHR (<b>10a</b>, R = SiMe<sub>3</sub>; <b>10b</b>, R = CMe<sub>3</sub>); <b>10a</b> is equilibrated with <b>7a</b> and Me<sub>3</sub>COH, whereas <b>10b</b> is further converted to the carbyne complex Cp*­(CO)<sub>2</sub>WCCH­(CMe<sub>3</sub>)­{GePh<sub>2</sub>(OCMe<sub>3</sub>)} (<b>11</b>)

    η<sup>3</sup>‑Silaallyl/Alkenylsilyl Molybdenum Complex: Synthesis, Structure, and Reactivity toward Primary Amines To Form Mo–N–Si Three-Membered Cyclic Complexes

    No full text
    The new η<sup>3</sup>-silaallyl/alkenylsilyl molybdenum complex Cp*Mo­(CO)<sub>2</sub>(η<sup>3</sup>-Ph<sub>2</sub>SiCHCMe<sub>2</sub>) (<b>3</b>) was synthesized by the reaction of Cp*Mo­(CO)<sub>2</sub>(py)­Me with Ph<sub>2</sub>HSiCHCMe<sub>2</sub>. Reactions of <b>3</b> with primary amines RNH<sub>2</sub> (R = <sup><i>t</i></sup>Bu, <sup><i>i</i></sup>Pr, Et) gave Mo–N–Si three-membered cyclic complexes Cp*Mo­(CO)<sub>2</sub>(κ<sup>2</sup>-<i>N</i>,<i>Si</i>-RHNSiPh<sub>2</sub>) (<b>5a</b>, R = <sup><i>t</i></sup>Bu; <b>5b</b>, R = <sup><i>i</i></sup>Pr; <b>5c</b>, R = Et) with elimination of isobutene. In NMR tube reactions using <sup><i>i</i></sup>PrNH<sub>2</sub> and EtNH<sub>2</sub>, the Mo–N–Si–C four-membered cyclic complexes Cp*Mo­(CO)<sub>2</sub>(κ<sup>2</sup>-<i>N</i>,<i>C</i>-RHNSiPh<sub>2</sub>CH<sup><i>i</i></sup>Pr) (<b>4b</b>, R = <sup><i>i</i></sup>Pr; <b>4c</b>, R = Et) were observed as intermediates leading to <b>5b</b> and <b>5c</b>, respectively. Complex <b>4c</b> was successfully isolated in a preparative reaction. The molecular structures of <b>3</b>, <b>4c</b>, and <b>5b</b> were determined by X-ray crystal analyses. Interestingly, the contribution of silylene character was suggested for the SiPh<sub>2</sub> moiety of <b>5b</b> from the X-ray structure. The reaction of <b>5b</b> with MeOH gave the dinuclear complex Cp*­(CO)<sub>2</sub>Mo­(μ-OMe)­(μ-H)­Mo­(CO)<sub>2</sub>Cp* as a major product

    Synthesis, Structure, and Reactivity of Tungsten Acetylide–Germylene Complexes

    No full text
    The novel acetylide–germylene complexes Cp*­(CO)<sub>2</sub>W­(GePh<sub>2</sub>)­(CCR) (<b>7a</b>, R = SiMe<sub>3</sub>; <b>7b</b>, R = CMe<sub>3</sub>) were synthesized by the reactions of Cp*­(CO)<sub>2</sub>W­(NCMe)­Me with Ph<sub>2</sub>HGeCCR (R = SiMe<sub>3</sub>, CMe<sub>3</sub>). X-ray crystal analysis of <b>7a</b> revealed significantly increased germylene–tungsten and decreased germylene–acetylide interactions in comparison to the corresponding interactions in the previously reported acetylide–silylene complex Cp*­(CO)<sub>2</sub>W­(SiPh<sub>2</sub>)­(CCSiMe<sub>3</sub>) (<b>1</b>). Complexes <b>7a</b>,<b>b</b> reacted with acetone to give the six-membered cyclic vinylidene complexes Cp*­(CO)<sub>2</sub>WCC­(R)­CMe<sub>2</sub>OGePh<sub>2</sub> (<b>8a</b>, R = SiMe<sub>3</sub>; <b>8b</b>, R = CMe<sub>3</sub>) by acetone insertion reaction, similar to the case of <b>1</b> affording Cp*­(CO)<sub>2</sub>WCC­(SiMe<sub>3</sub>)­CMe<sub>2</sub>OSiPh<sub>2</sub> (<b>2</b>). In the presence of 4-(dimethylamino)­pyridine (DMAP), complexes <b>8a</b>,<b>b</b> gave <i>trans</i>- and <i>cis</i>-DMAP-stabilized germylene acetylide complexes Cp*­(CO)<sub>2</sub>W­(GePh<sub>2</sub>·DMAP)­(CCR) (<i><b>trans</b></i><b>-</b> and <i><b>cis</b></i><b>-9a</b>, R = SiMe<sub>3</sub>; <i><b>trans</b></i><b>-</b> and <i><b>cis</b></i><b>-9b</b>, R = CMe<sub>3</sub>) and acetone, showing a reactivity different from that of the silicon analogue <b>2</b>. Complexes <i><b>cis-</b></i><b>9a,b</b> were isolated as crystals from the reaction of <b>7a,b</b> with DMAP and formed mixtures with <i><b>trans</b></i><b>-9a,b</b> in solutions, respectively. A mixture of <b><i>cis</i>-</b> and <b><i>trans</i>-9a</b> reacted with acetone to form an equilibrium mixture with <b>8a</b> and DMAP. The reactivity of <b>7a</b>,<b>b</b> toward Me<sub>3</sub>COH was also investigated to reveal the formation of the vinylidene complexes Cp*­(CO)<sub>2</sub>W­{GePh<sub>2</sub>(OCMe<sub>3</sub>)}CCHR (<b>10a</b>, R = SiMe<sub>3</sub>; <b>10b</b>, R = CMe<sub>3</sub>); <b>10a</b> is equilibrated with <b>7a</b> and Me<sub>3</sub>COH, whereas <b>10b</b> is further converted to the carbyne complex Cp*­(CO)<sub>2</sub>WCCH­(CMe<sub>3</sub>)­{GePh<sub>2</sub>(OCMe<sub>3</sub>)} (<b>11</b>)
    corecore