19 research outputs found

    Strong Ferromagnetic Exchange Interactions in Hinge-like Dy(O<sub>2</sub>Cu)<sub>2</sub> Complexes Involving Double Oxygen Bridges

    No full text
    Two trinuclear isomeric compounds, [{(Cu<sup>II</sup>(salpn))Ā­(MeĀ­(CO)Ā­Me)}<sub>2</sub>Dy<sup>III</sup>(NO<sub>3</sub>)<sub>3</sub>] (<b>1</b>) and [{Cu<sup>II</sup>(salpn)}<sub>2</sub>Dy<sup>III</sup>(H<sub>2</sub>O)Ā­(NO<sub>3</sub>)<sub>3</sub>]Ā·MeOH (<b>2</b>), along with one polymeric compound, {[{Cu<sup>II</sup>(salpn)}<sub>2</sub>Dy<sup>III</sup>(NO<sub>3</sub>)<sub>3</sub>bpy]Ā·MeOHĀ·H<sub>2</sub>O}<sub><i>n</i></sub> (<b>3</b>), were synthesized using a metalloligand, [Cu<sup>II</sup>(salpn)], where H<sub>2</sub>salpn and bpy stand for <i>N</i>,<i>N</i>ā€²-bisĀ­(salicylidene)-1,3-propanediamine and 4,4ā€²-bipyridine, respectively. Compounds <b>1</b> and <b>2</b> were selectively prepared with two solvents: the less polar acetone led to the exclusive crystallization of <b>1</b> with a <i>transoid</i> trinuclear architecture, while more polar solvent methanol provided sole construction of <b>2</b> with a <i>cisoid</i> trinuclear architecture. Compound <b>3</b> was prepared from <b>1</b> or <b>2</b> after bpy was introduced as a bridge. The Dy and Cu ions are doubly bridged with oxygen atoms, and the core DyO<sub>2</sub>Cu skeletons are characterized by different ā€œbutterfly anglesā€ of 140.9(1)Ā°, 147.1(19)Ā°, and 142.4(2)Ā° for <b>1</b>, <b>2</b>, and <b>3</b>, respectively. We have examined the molecular structures and magnetic properties of <b>1</b>ā€“<b>3</b> using high-frequency electron paramagnetic resonance (HF-EPR), magnetization, and magnetic susceptibility techniques. These compounds showed slow magnetization reversal in the measurements of alternating current magnetic susceptibility. We analyzed EPR frequency-field diagrams using an effective spin-Hamiltonian including only one doublet of Dy sublevels and found that the exchange couplings are ferromagnetic in all compounds. The exchange coupling parameters <i>J</i><sub>Dyā€“Cu</sub> of <b>1</b>, <b>2</b>, and <b>3</b> were determined as 2.25 Ā± 0.05, 1.82 Ā± 0.04, and 1.79 Ā± 0.04 K, respectively. These values are larger than those found in previous research using EPR analysis on [Cu<sup>II</sup>(L<sup>A</sup>)Ā­(C<sub>3</sub>H<sub>6</sub>O)Ā­Dy<sup>III</sup>(NO<sub>3</sub>)<sub>3</sub>] (H<sub>2</sub>L<sup>A</sup> = <i>N</i>,<i>N</i>ā€²-bisĀ­(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) and [Dy<sup>III</sup>L<sup>B</sup><sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>{Cu<sup>II</sup>(CH<sub>3</sub>OH)}<sub>2</sub>]Ā­(NO<sub>3</sub>)Ā­(CH<sub>3</sub>OH) (H<sub>2</sub>L<sup>B</sup> = 2,6-bisĀ­(acetylaceto)Ā­pyridine). The present result shows an advantage of doubly oxygen-bridged motifs to built strong ferromagnetic interactions between lanthanide and transition metal ions. We found that the exchange coupling strength is sensitive to the structural parameters such as bond angles, bond lengths, and butterfly angles. Precise determination of the exchange parameters would contribute to development of exchange-coupled 4fā€“3d heterometallic complexes

    Strong Ferromagnetic Exchange Interactions in Hinge-like Dy(O<sub>2</sub>Cu)<sub>2</sub> Complexes Involving Double Oxygen Bridges

    No full text
    Two trinuclear isomeric compounds, [{(Cu<sup>II</sup>(salpn))Ā­(MeĀ­(CO)Ā­Me)}<sub>2</sub>Dy<sup>III</sup>(NO<sub>3</sub>)<sub>3</sub>] (<b>1</b>) and [{Cu<sup>II</sup>(salpn)}<sub>2</sub>Dy<sup>III</sup>(H<sub>2</sub>O)Ā­(NO<sub>3</sub>)<sub>3</sub>]Ā·MeOH (<b>2</b>), along with one polymeric compound, {[{Cu<sup>II</sup>(salpn)}<sub>2</sub>Dy<sup>III</sup>(NO<sub>3</sub>)<sub>3</sub>bpy]Ā·MeOHĀ·H<sub>2</sub>O}<sub><i>n</i></sub> (<b>3</b>), were synthesized using a metalloligand, [Cu<sup>II</sup>(salpn)], where H<sub>2</sub>salpn and bpy stand for <i>N</i>,<i>N</i>ā€²-bisĀ­(salicylidene)-1,3-propanediamine and 4,4ā€²-bipyridine, respectively. Compounds <b>1</b> and <b>2</b> were selectively prepared with two solvents: the less polar acetone led to the exclusive crystallization of <b>1</b> with a <i>transoid</i> trinuclear architecture, while more polar solvent methanol provided sole construction of <b>2</b> with a <i>cisoid</i> trinuclear architecture. Compound <b>3</b> was prepared from <b>1</b> or <b>2</b> after bpy was introduced as a bridge. The Dy and Cu ions are doubly bridged with oxygen atoms, and the core DyO<sub>2</sub>Cu skeletons are characterized by different ā€œbutterfly anglesā€ of 140.9(1)Ā°, 147.1(19)Ā°, and 142.4(2)Ā° for <b>1</b>, <b>2</b>, and <b>3</b>, respectively. We have examined the molecular structures and magnetic properties of <b>1</b>ā€“<b>3</b> using high-frequency electron paramagnetic resonance (HF-EPR), magnetization, and magnetic susceptibility techniques. These compounds showed slow magnetization reversal in the measurements of alternating current magnetic susceptibility. We analyzed EPR frequency-field diagrams using an effective spin-Hamiltonian including only one doublet of Dy sublevels and found that the exchange couplings are ferromagnetic in all compounds. The exchange coupling parameters <i>J</i><sub>Dyā€“Cu</sub> of <b>1</b>, <b>2</b>, and <b>3</b> were determined as 2.25 Ā± 0.05, 1.82 Ā± 0.04, and 1.79 Ā± 0.04 K, respectively. These values are larger than those found in previous research using EPR analysis on [Cu<sup>II</sup>(L<sup>A</sup>)Ā­(C<sub>3</sub>H<sub>6</sub>O)Ā­Dy<sup>III</sup>(NO<sub>3</sub>)<sub>3</sub>] (H<sub>2</sub>L<sup>A</sup> = <i>N</i>,<i>N</i>ā€²-bisĀ­(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) and [Dy<sup>III</sup>L<sup>B</sup><sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>{Cu<sup>II</sup>(CH<sub>3</sub>OH)}<sub>2</sub>]Ā­(NO<sub>3</sub>)Ā­(CH<sub>3</sub>OH) (H<sub>2</sub>L<sup>B</sup> = 2,6-bisĀ­(acetylaceto)Ā­pyridine). The present result shows an advantage of doubly oxygen-bridged motifs to built strong ferromagnetic interactions between lanthanide and transition metal ions. We found that the exchange coupling strength is sensitive to the structural parameters such as bond angles, bond lengths, and butterfly angles. Precise determination of the exchange parameters would contribute to development of exchange-coupled 4fā€“3d heterometallic complexes

    Structure and Magnetism of [<i>n</i>-BuNH<sub>3</sub>]<sub>12</sub>[Cu<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]Ā·14H<sub>2</sub>O Sandwiching a Rhomblike Cu<sub>4</sub><sup>8+</sup> Tetragon through Ī±-Keggin Linkage

    No full text
    A sandwich-type polyoxometalate, [Cu<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12āˆ’</sup> (<b>1a</b>), in which two B-Ī±-[GeW<sub>9</sub>O<sub>34</sub>]<sup>12āˆ’</sup> ligands sandwich a rhomblike Cu<sub>4</sub><sup>8+</sup> tetragon through Ī±-Īšeggin linkage, is first isolated as a [<i>n</i>-BuNH<sub>3</sub>]<sup>+</sup> salt, [<i>n</i>-BuNH<sub>3</sub>]<sub>12</sub>[Cu<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]Ā·14H<sub>2</sub>O (<b>1</b>). A Cu<sub>4</sub>O<sub>14</sub> cluster for the rhomblike Cu<sub>4</sub><sup>8+</sup> tetragon in <b>1a</b> with <i>C</i><sub>2<i>h</i></sub> local symmetry consists of two Jahnāˆ’Teller (JT) distorted CuO<sub>6</sub> octahedra (at internal sites) with a short diagonal Cu<sub>int</sub>Ā·Ā·Ā·Cu<sub>int</sub> distance of 3.10āˆ’3.11 ƅ and two CuO<sub>5</sub> square pyramids (at external site) with a long diagonal Cu<sub>ext</sub>Ā·Ā·Ā·Cu<sub>ext</sub> distance of 5.34āˆ’5.35 ƅ, the feature of which is different from [Cu<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12āˆ’</sup> (<b>2a</b>), comprising the four JT-distorted CuO<sub>6</sub> octahedral Cu<sub>4</sub><sup>8+</sup> tetragons through Ī²-Keggin linkage: the axial Cu<sub>ext</sub>āˆ’O bond distance (2.27āˆ’2.29 ƅ) for <b>1a</b> is shorter than the corresponding JT-axial distance (2.36 ƅ) for <b>2a</b>. Measurements of magnetic susceptibility, magnetization, and electron spin resonance spectroscopy for <b>1</b> are carried out for better understanding of the molecular magnetism of the Cu<sub>4</sub><sup>8+</sup> tetragon in comparison with <b>2a</b>. The analysis of the magnetic behavior, based on the isotropic Heisenberg spin Hamiltonian comprising three exchange parameters (<i>J</i>, <i>Jā€²</i>, and <i>Jā€²ā€²</i>), gives <i>J</i> = āˆ’24.1 cm<sup>āˆ’1</sup> for the Cu<sub>ext</sub>Ā·Ā·Cu<sub>int</sub> sides, <i>Jā€²</i> = āˆ’99.1 cm<sup>āˆ’1</sup> for the Cu<sub>int</sub>Ā·Ā·Ā·Cu<sub>int</sub> diagonal, and <i>Jā€²ā€²</i> = +0.04 cm<sup>āˆ’1</sup> for the Cu<sub>ext</sub>Ā·Ā·Ā·Cu<sub>ext</sub> diagonal of the Cu<sub>4</sub><sup>8+</sup> rhombus. The <i>S</i> = 1 ground state of <b>1</b> displays <u><i>g</i></u><sub>||</sub> = 2.42, <i>g</i><sub>āŠ„</sub>= 2.07, <i>D</i> = āˆ’1.44 Ɨ 10<sup>āˆ’2</sup> cm<sup>āˆ’1</sup>, and |<i>A</i><sub>Cu||</sub>| = 46.5 Ɨ 10<sup>āˆ’4</sup> cm<sup>āˆ’1</sup>. An observation of the asymmetric magnetization between a positive and a negative pulsed field (up to 10<sup>3</sup> T/s) at 0.5 K on the hysteresis loop indicates the quantum tunneling at zero field. The magnetic exchange interactions of four unpaired d<sub><i>x</i><sup>2</sup>āˆ’<i>y</i><sup>2</sup></sub>-electron spins are discussed in terms of the point-dipole approximation, and the primary contribution to <i>D</i> is implied to come from the magnetic dipoleāˆ’dipole interaction between two spins at the Cu<sub>ext</sub> centers

    Structure and Magnetism of [<i>n</i>-BuNH<sub>3</sub>]<sub>12</sub>[Cu<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]Ā·14H<sub>2</sub>O Sandwiching a Rhomblike Cu<sub>4</sub><sup>8+</sup> Tetragon through Ī±-Keggin Linkage

    No full text
    A sandwich-type polyoxometalate, [Cu<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12āˆ’</sup> (<b>1a</b>), in which two B-Ī±-[GeW<sub>9</sub>O<sub>34</sub>]<sup>12āˆ’</sup> ligands sandwich a rhomblike Cu<sub>4</sub><sup>8+</sup> tetragon through Ī±-Īšeggin linkage, is first isolated as a [<i>n</i>-BuNH<sub>3</sub>]<sup>+</sup> salt, [<i>n</i>-BuNH<sub>3</sub>]<sub>12</sub>[Cu<sub>4</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]Ā·14H<sub>2</sub>O (<b>1</b>). A Cu<sub>4</sub>O<sub>14</sub> cluster for the rhomblike Cu<sub>4</sub><sup>8+</sup> tetragon in <b>1a</b> with <i>C</i><sub>2<i>h</i></sub> local symmetry consists of two Jahnāˆ’Teller (JT) distorted CuO<sub>6</sub> octahedra (at internal sites) with a short diagonal Cu<sub>int</sub>Ā·Ā·Ā·Cu<sub>int</sub> distance of 3.10āˆ’3.11 ƅ and two CuO<sub>5</sub> square pyramids (at external site) with a long diagonal Cu<sub>ext</sub>Ā·Ā·Ā·Cu<sub>ext</sub> distance of 5.34āˆ’5.35 ƅ, the feature of which is different from [Cu<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(GeW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12āˆ’</sup> (<b>2a</b>), comprising the four JT-distorted CuO<sub>6</sub> octahedral Cu<sub>4</sub><sup>8+</sup> tetragons through Ī²-Keggin linkage: the axial Cu<sub>ext</sub>āˆ’O bond distance (2.27āˆ’2.29 ƅ) for <b>1a</b> is shorter than the corresponding JT-axial distance (2.36 ƅ) for <b>2a</b>. Measurements of magnetic susceptibility, magnetization, and electron spin resonance spectroscopy for <b>1</b> are carried out for better understanding of the molecular magnetism of the Cu<sub>4</sub><sup>8+</sup> tetragon in comparison with <b>2a</b>. The analysis of the magnetic behavior, based on the isotropic Heisenberg spin Hamiltonian comprising three exchange parameters (<i>J</i>, <i>Jā€²</i>, and <i>Jā€²ā€²</i>), gives <i>J</i> = āˆ’24.1 cm<sup>āˆ’1</sup> for the Cu<sub>ext</sub>Ā·Ā·Cu<sub>int</sub> sides, <i>Jā€²</i> = āˆ’99.1 cm<sup>āˆ’1</sup> for the Cu<sub>int</sub>Ā·Ā·Ā·Cu<sub>int</sub> diagonal, and <i>Jā€²ā€²</i> = +0.04 cm<sup>āˆ’1</sup> for the Cu<sub>ext</sub>Ā·Ā·Ā·Cu<sub>ext</sub> diagonal of the Cu<sub>4</sub><sup>8+</sup> rhombus. The <i>S</i> = 1 ground state of <b>1</b> displays <u><i>g</i></u><sub>||</sub> = 2.42, <i>g</i><sub>āŠ„</sub>= 2.07, <i>D</i> = āˆ’1.44 Ɨ 10<sup>āˆ’2</sup> cm<sup>āˆ’1</sup>, and |<i>A</i><sub>Cu||</sub>| = 46.5 Ɨ 10<sup>āˆ’4</sup> cm<sup>āˆ’1</sup>. An observation of the asymmetric magnetization between a positive and a negative pulsed field (up to 10<sup>3</sup> T/s) at 0.5 K on the hysteresis loop indicates the quantum tunneling at zero field. The magnetic exchange interactions of four unpaired d<sub><i>x</i><sup>2</sup>āˆ’<i>y</i><sup>2</sup></sub>-electron spins are discussed in terms of the point-dipole approximation, and the primary contribution to <i>D</i> is implied to come from the magnetic dipoleāˆ’dipole interaction between two spins at the Cu<sub>ext</sub> centers

    Slow Relaxation of the Magnetization of an Mn<sup>III</sup> Single Ion

    No full text
    A Mn<sup>III</sup>-salen-type complex with a diamagnetic [Co<sup>III</sup>(CN)<sub>6</sub>]<sup>3ā€“</sup> moiety, [Mn<sup>III</sup>(5-TMAMĀ­(<i>R</i>)-salmen)Ā­(H<sub>2</sub>O)Ā­Co<sup>III</sup>(CN)<sub>6</sub>]Ā·7H<sub>2</sub>OĀ·MeCN [<b>1</b>; 5-TMAMĀ­(<i>R</i>)-salmen = (<i>R</i>)-<i>N</i>,<i>N</i>ā€²-(1-methylethylene)Ā­bisĀ­(5-trimethylammoniomethylsalicylideneiminate], was prepared. From direct-current magnetic susceptibilities, magnetization, and high-field and multifrequency electronic spin resonance measurements on powdered samples, <b>1</b> has a significant uniaxial anisotropy. Frequency-dependent alternating-current susceptibility signals were clearly observed, indicating slow magnetic relaxation. Thus, complex <b>1</b> behaves as a single-ion magnet

    Exchange Coupling and Its Chemical Trend Studied by High-Frequency EPR on Heterometallic [Ln<sub>2</sub>Ni] Complexes

    No full text
    We applied high-frequency electron paramagnetic resonance to trinuclear 4fā€“3d heterometallic complexes, [{LnĀ­(hfac)<sub>3</sub>}<sub>2</sub>{NiĀ­(dpk)<sub>2</sub>(py)<sub>2</sub>}] (Ln = Y, Gd, Tb, and Ho; hfac = hexafluoroacetylacetonate, dpk = di-2-pyridyl ketoximate, and py = pyridine), and determined the exchange parameter <i>J</i><sub>Lnā€“Ni</sub> as well as nickelĀ­(II) zero-field splitting parameters. In contrast to the antiferromagnetic Dy analogue, ferromagnetic couplings were precisely characterized as <i>J</i><sub>Gdā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.301(4) K, <i>J</i><sub>Tbā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.216(12) K, and <i>J</i><sub>Hoā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.110(3) K (defined as āˆ’<i>J</i><sub>Lnā€“Ni</sub>āˆ‘<i>J</i><sub>Ln</sub><sup><i>z</i></sup><i>S</i><sub>Ni</sub>)

    Ferromagnetic Exchange Couplings Showing a Chemical Trend in Cuā€“Lnā€“Cu Complexes (Ln = Gd, Tb, Dy, Ho, Er)

    No full text
    Exchange couplings in isomorphous [LnCu<sub>2</sub>] were evaluated by high-frequency electron paramagnetic resonance and magnetization studies. The exchange parameter <i>J</i><sub>Lnā€“Cu</sub> was decreased with an increase in the atomic number; <i>J</i><sub>Lnā€“Cu</sub>/<i>k</i><sub>B</sub> = 4.45(11), 2.27(6), 0.902(10), 0.334(3), and 0.136(8) K for Ln = Gd, Tb, Dy, Ho, and Er, respectively

    Ferromagnetic Exchange Couplings Showing a Chemical Trend in Cuā€“Lnā€“Cu Complexes (Ln = Gd, Tb, Dy, Ho, Er)

    No full text
    Exchange couplings in isomorphous [LnCu<sub>2</sub>] were evaluated by high-frequency electron paramagnetic resonance and magnetization studies. The exchange parameter <i>J</i><sub>Lnā€“Cu</sub> was decreased with an increase in the atomic number; <i>J</i><sub>Lnā€“Cu</sub>/<i>k</i><sub>B</sub> = 4.45(11), 2.27(6), 0.902(10), 0.334(3), and 0.136(8) K for Ln = Gd, Tb, Dy, Ho, and Er, respectively

    Exchange Coupling and Its Chemical Trend Studied by High-Frequency EPR on Heterometallic [Ln<sub>2</sub>Ni] Complexes

    No full text
    We applied high-frequency electron paramagnetic resonance to trinuclear 4fā€“3d heterometallic complexes, [{LnĀ­(hfac)<sub>3</sub>}<sub>2</sub>{NiĀ­(dpk)<sub>2</sub>(py)<sub>2</sub>}] (Ln = Y, Gd, Tb, and Ho; hfac = hexafluoroacetylacetonate, dpk = di-2-pyridyl ketoximate, and py = pyridine), and determined the exchange parameter <i>J</i><sub>Lnā€“Ni</sub> as well as nickelĀ­(II) zero-field splitting parameters. In contrast to the antiferromagnetic Dy analogue, ferromagnetic couplings were precisely characterized as <i>J</i><sub>Gdā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.301(4) K, <i>J</i><sub>Tbā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.216(12) K, and <i>J</i><sub>Hoā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.110(3) K (defined as āˆ’<i>J</i><sub>Lnā€“Ni</sub>āˆ‘<i>J</i><sub>Ln</sub><sup><i>z</i></sup><i>S</i><sub>Ni</sub>)

    Exchange Coupling and Its Chemical Trend Studied by High-Frequency EPR on Heterometallic [Ln<sub>2</sub>Ni] Complexes

    No full text
    We applied high-frequency electron paramagnetic resonance to trinuclear 4fā€“3d heterometallic complexes, [{LnĀ­(hfac)<sub>3</sub>}<sub>2</sub>{NiĀ­(dpk)<sub>2</sub>(py)<sub>2</sub>}] (Ln = Y, Gd, Tb, and Ho; hfac = hexafluoroacetylacetonate, dpk = di-2-pyridyl ketoximate, and py = pyridine), and determined the exchange parameter <i>J</i><sub>Lnā€“Ni</sub> as well as nickelĀ­(II) zero-field splitting parameters. In contrast to the antiferromagnetic Dy analogue, ferromagnetic couplings were precisely characterized as <i>J</i><sub>Gdā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.301(4) K, <i>J</i><sub>Tbā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.216(12) K, and <i>J</i><sub>Hoā€“Ni</sub>/<i>k</i><sub>B</sub> = +0.110(3) K (defined as āˆ’<i>J</i><sub>Lnā€“Ni</sub>āˆ‘<i>J</i><sub>Ln</sub><sup><i>z</i></sup><i>S</i><sub>Ni</sub>)
    corecore