2 research outputs found

    Site-Specific Attachment of a Protein to a Carbon Nanotube End without Loss of Protein Function

    No full text
    Establishing a nanobiohybrid device largely relies on the availability of various bioconjugation procedures which allow coupling of biomolecules and inorganic materials. Especially, site-specific coupling of a protein to nanomaterials is highly useful and significant, since it can avoid adversely affecting the protein’s function. In this study, we demonstrated a covalent coupling of a protein of interest to the end of carbon nanotubes without affecting protein’s function. A modified Staudinger-Bertozzi ligation was utilized to couple a carbon nanotube end with an azide group which is site-specifically incorporated into a protein of interest. We demonstrated that Ca<sup>2+</sup>-sensor protein, calmodulin, can be attached to the end of the nanotubes without affecting the ability to bind to the substrate in a calcium-dependent manner. This procedure can be applied not only to nanotubes, but also to other nanomaterials, and therefore provides a fundamental technique for well-controlled protein conjugation
    corecore