193 research outputs found

    Visualization of Hydride in Titanium and Titanium-Aluminide by Refraction-Enhanced X-ray Imaging Technique *

    Get PDF
    Refraction-enhanced X-ray imaging method using extremely parallel X-ray beams from a so-called third generation synchrotron radiation source was applied to observe titanium-hydride in titanium and titanium-aluminide polycrystals. Hydride in titanium was formed by an annealing in 1 atm hydrogen gas and electrolytic-charging for cross-sectional observation. Although the hydride in titanium cannot be observed by conventional radiography that utilizes absorption of X-rays, we visualized a high-contrast projection image of hydride using refractioncontrast radiography. This is a promising new technique for non-destructive inspection in bulk material systems with only small differences between refraction indexes such as hydride in titanium

    Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture t (BNCT)

    Get PDF
    Boron neutron capture therapy (BNCT) is a tumor selective therapy, the effectiveness of which depends on sufficient 10B delivery to and accumulation in tumors. In this study, we used self-assembling A6K peptide nanotubes as boron carriers and prepared new boron agents by simple mixing of A6K and BSH. BSH has been used to treat malignant glioma patients in clinical trials and its drug safety and availability have been confirmed; however, its contribution to BNCT efficacy is low. A6K nanotube delivery improved two major limitations of BSH, including absence of intracellular transduction and non-specific drug delivery to tumor tissue. Varying the A6K peptide and BSH mixture ratio produced materials with different morphologies—determined by electron microscopy—and intracellular transduction efficiencies. We investigated the A6K/BSH 1:10 mixture ratio and found high intracellular boron uptake with no toxicity. Microscopy observation showed intracellular localization of A6K/BSH in the perinuclear region and endosome in human glioma cells. The intracellular boron concentration using A6K/BSH was almost 10 times higher than that of BSH. The systematic administration of A6K/BSH via mouse tail vein showed tumor specific accumulation in a mouse brain tumor model with immunohistochemistry and pharmacokinetic study. Neutron irradiation of glioma cells treated with A6K/BSH showed the inhibition of cell proliferation in a colony formation assay. Boron delivery using A6K peptide provides a unique and simple strategy for next generation BNCT drugs

    In vivo dynamic analysis of BMP-2-induced ectopic bone formation

    Get PDF
    Bone morphogenetic protein (BMP)-2 plays a central role in bone-tissue engineering because of its potent bone-induction ability. However, the process of BMP-induced bone formation in vivo remains poorly elucidated. Here, we aimed to establish a method for intravital imaging of the entire process of BMP-2-induced ectopic bone formation. Using multicolor intravital imaging in transgenic mice, we visualized the spatiotemporal process of bone induction, including appearance and motility of osteoblasts and osteoclasts, angiogenesis, collagen-fiber formation, and bone-mineral deposition. Furthermore, we investigated how PTH1-34 affects BMP-2-induced bone formation, which revealed that PTH1-34 administration accelerated differentiation and increased the motility of osteoblasts, whereas it decreased morphological changes in osteoclasts. This is the first report on visualization of the entire process of BMP-2-induced bone formation using intravital imaging techniques, which, we believe, will contribute to our understanding of ectopic bone formation and provide new parameters for evaluating bone-forming activity.Hashimoto K., Kaito T., Furuya M., et al. In vivo dynamic analysis of BMP-2-induced ectopic bone formation. Scientific Reports 10, 4751 (2020); https://doi.org/10.1038/s41598-020-61825-2

    Molecular analysis of a variant type of familial amyloidotic polyneuropathy showing cerebellar ataxia and pyramidal tract signs

    Get PDF
    金沢大学がん研究所がん分子細胞制御A Japanese family with atypical type I familial amyloidotic polyneuropathy (FAP) in Iiyama, Japan, was studied. Most of the family members have dysfunctions of the central nervous system, in addition to typical symptoms of type I FAP. The transthyretin (TTR, also called prealbumin) gene of the atypical FAP (FAP-IY) was analyzed with recombinant DNA techniques and a RIA method. FAP-IY was found to have the mutation responsible for the methionine-for-valine substitution at position 30 of TTR, as in the case of typical type I FAP. However, analysis of DNA polymorphisms in the TTR locus showed that FAP-IY has a genetic background differing from that of the typical type I FAP. These observations lead to the consideration that a genetic factor(s) involved in the dysfunction of the central nervous system may locate in a chromosome region in close proximity to the TTR gene

    SLPI is a critical mediator that controls PTH-induced bone formation

    Get PDF
    Osteoclastic bone resorption and osteoblastic bone formation/replenishment are closely coupled in bone metabolism. Anabolic parathyroid hormone (PTH), which is commonly used for treating osteoporosis, shifts the balance from osteoclastic to osteoblastic, although it is unclear how these cells are coordinately regulated by PTH. Here, we identify a serine protease inhibitor, secretory leukocyte protease inhibitor (SLPI), as a critical mediator that is involved in the PTH-mediated shift to the osteoblastic phase. Slpi is highly upregulated in osteoblasts by PTH, while genetic ablation of Slpi severely impairs PTH-induced bone formation. Slpi induction in osteoblasts enhances its differentiation, and increases osteoblast–osteoclast contact, thereby suppressing osteoclastic function. Intravital bone imaging reveals that the PTH-mediated association between osteoblasts and osteoclasts is disrupted in the absence of SLPI. Collectively, these results demonstrate that SLPI regulates the communication between osteoblasts and osteoclasts to promote PTH-induced bone anabolism.Morimoto A., Kikuta J., Nishikawa K., et al. SLPI is a critical mediator that controls PTH-induced bone formation. Nature Communications 12, 2136 (2021); https://doi.org/10.1038/s41467-021-22402-x
    corecore