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INTRODUCTION

This work is motivated by the study of the heat equations with tem-
perature controls through the interior or the boundary of the domain. For
instance, we consider the following type of parabolic variational problems
with obstacles: Find a function u = u(x, #) on [0, 1] x [0, o) satisfying

ue C([0, co); L0, 1))~ WHH0, T; L*(0, 1)) for every T>0,
u(-, 0)=uy,,
u(, ye K(t)y={ze W*(0,1);0<=z< g(-, r)on [0, 1]} for all =0,

v 4 (i, 1) = £ D)u(x, 1) — 2(x)) dx

]

+ jl ux, judx, j—z,(x))dx<0

for all ze K(t) and a.e. t=0,

where u, is a function on [0, 1] and g, f are functions on [0, 1] x [0, cc).

This kind of variational problems has been discussed by many authors (for

instance, see [3,11]) from the viewpoint of the theory of noniinear

evolution equations governed by time-dependent subdifferential operators
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in Hilbert spaces; in fact, problem (V) is written as a Cauchy problem in
the space H= L*(0, 1) of the form

(CP; uy) —u'(t)€ 8¢’ (u(t)), O<t<wo, u0)=u,,

where ¢": H— (— o0, o0], #0, is a ls.c. (lower semi-continuous) convex
function given by

#(2) =% fo 12,(x)|? dx — fol flx, ) z(x)dx  if zeK(1),

=00 otherwise,

for each =0, and 0¢ denotes its subdifferential. Our interest in problem
(V) is the asymptotic behavior of solutions.

In [, 2], Ball and Peleticr dealt with the heat equation u,=u,, with a
class of nonlinear boundary conditions, and discussed the asymptotic
behavior of solutions. Their approach is based upon the general results
which have been developed in the theory of dynamical systems and of com-
pact or uniform processes. For example, see Dafermos [6,7] and
Slemrod [14]. In problem (V), the solution u is, however, constrained by
the moving convex sets K(t), say u(-, t)€ K(¢) holds for all 1= 0, and this
restraint does not easily allow us the direct use of general results in the
theory of compact or uniform processes. Indeed, it seems to be difficult to
verify that problem (V) generates a process in some of classes which have
been treated so far. It would, of course, be very interesting and important
to be able to make it possible to use the theory of processes extensively in
order to investigate the asymptotic behavior of solutions to problem (V)
and more generally to problems having the same kind of time-dependence.
But we intend to discuss this question elsewhere.

In this paper we study the asymptotic behavior of solutions to Cauchy
problems of the form (CP; u,) formulated in abstract Hilbert spaces. In the
case when ¢’ is independent of ¢, namely ¢‘=¢ for >0, the asymptotic
behavior of the solution u to

—u'(1) e dg(u(r)), O<t<oo, u(0)=u,,

was investigated in detail, for example, in Brézis [4], Bruck [5], Dafermos
and Slemrod [8] and Pazy [13]. But, in the time-dependent case, par-
ticularly in such a case as D(¢°) # D(¢*) (s # ¢), which happens in problem
(V), we have not noted any general results on the asymptotic behavior of
solutions. Under some assumptions imposed on the family {¢;0<z< o0}
and the limit ¢ of ¢‘ as r — o0 in a sense, we shall show that the solution
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u(t) of (CP; uy) converges to an equilibrium point u, as ¢ — oo in the sense
that

(a) lim,_ ., ¢'(u(r)) exists and equals min ¢> (the minimum of ¢*),
and

(b) u(t) > u, weakly (or strongly) in H as t— oo and ¢~ attains
min ¢* at u., (Le, 0edp™(uy)).

Notations. In general, for a (real) Banach space X, we denote the norm
by |'| x- Throughout this paper, let H be a Hilbert space with inner product
(*,*)y. For a proper ls.c. convex function ¢ on H, D{(¢) is the effective
domain of ¢, d¢ is the subdifferential operator of ¢ and D(d¢) is the
domain of d¢. We refer to the book of Brézis [4] for their definitions and
general properties.

1. STATEMENT OF MAIN RESULTS

Let {¢'} = {¢";0<r1< 0} be a family of proper Ls.c. convex functions ¢’
on H, and consider the Cauchy problem

(CPyug) —u'(t)eddi(u(t)), O<t<oo, u(0)=u,,

where u, is given in D(¢°) and the unknown u is an H-valued function on
[0, oo ); u'(1) (=(d/dt) u(r)) denotes the strong derivative of #(r) in H. By a
solution of (CP; u,) we mean a function u: [0, o0) — H such that

(i) ue W0, T; H) for every 0 < T< o and u(0) = u,,
(it) the function ¢ — ¢*(u(z)) is locally bounded on [0, oo}, and
(iii) —u'(r)edd’(u(r)) for ae. 1 =0.

We consider the following assumptions (A) and (B) on {¢'}.

(A) For each r>0 there are absolutely continuous real-valued
functions a,, b, on [0, oo) such that

(al) a.eL?*0, o0)and bl e L'(0, ), and

(a2) for each s, te [0, o0) with s <t and each ze D(¢°) with |z|, <r
there exists Z e D(¢’) satisfying

12—zl g <lalt)—a, (s)|(1 +¢*(2)]"?)
and

¢(2)— #°(2) < 1b,(1) = b (s)|(1 + |4°(2)]).
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(B) ¢’ converges to a proper ls.c. convex function ¢ on H as t - w0 in
the sense of Mosco [12], that is, the conditions (bl) and (b2) below hold:
(b1) if w: [0, 00) — H and w(¢) - z weakly in H as ¢ — co, then

lim inf ¢/(w(2)) = ¢*(2);

(b2) for each ze D(¢>) there is a function w: [0, co) — H such that
w(t) — z strongly in A and ¢‘(w(1)) = ¢ (z) as t = o©.

According to the results in [11, Chap. 1], under condition (A), (CP; u,)
admits a unique solution u for each u, € D(#°), and we then define two sets
Q.(uo) and 2, (u,) by

Q(uo) = {ze H;u(t,) > z strongly in H for some sequence {¢,} with
t,— o}

and

Q. (uo)={ze H;u(t,) >z weakly in H for some sequence {r,} with
f,— o0}

Also, we set

F(¢*)={zeH;¢*(z)=min ¢~} (={zeH;0e04 (z)}).
With these notations, the first main result is stated as follows.

THEOREM 1. Suppose (A) and (B) hold. Let uge D(¢°) and u be the
solution to (CP; u,), and suppose u is bounded on [0, oc0). Then we have:

(i) lim,_ , ¢'(u()) = min ¢,
(i) Q,(up)# J and Q,,(ug) = F(¢™).
COROLLARY 1. In addition to all the assumptions of Theorem 1, suppose

that F(¢>) is singleton, say F(¢°)={u,,}. Then u(t)— u,, weakly in H as
{ — 0.

COROLLARY 2. In addition to all the assumptions of Theorem 1, suppose
the following condition (C) holds:

(C) There is a family {S,}={S,;0<r< o} of compact subsets of H
such that {ze H; |z| y <1, |¢"(2)|<r} S, for all t=0 and r 2 0.

Then we have Q (uy) # & and Q (ug) = F(¢™).

The above two corollaries follow immediately from Theorem 1.
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Next, in order to show that the solution u(z) of (CP;u,) converges
weakly in H as 1 — o0, we propose the following condition (B, which is
stronger than (B).

(B)" ¢’ converges to ¢ on H as t— oo in the sense that (bl) of (B}
and (b2)’ below hold:

{(b2) For each ze D(¢>) there exist w: [0, oo} - H, o: [0, ) - R
and B: [0, o) - R such that ae L*0, «0), fe L'(0, o),

a(t) -0, B(t) -0, as t— 0
and
w(t) —zlp<a(t),  ¢'(x(1))—¢=(z)<B(z)  forall 1>0.
The second main result is then stated as follows.

THEOREM 2. Suppose (A) and (B)' hold, and suppose that for each r =0
there is a non-negative function n, in LY(0, cc) such that

¢'(z) +n,(0)(1 +1¢'(2)]) Z inf{¢> (h); he H}

for all ze H with |z| y<r and ae. t 20. (L.1)

Then the following statements are equivalent:

(a) For every uge D(¢°) the solution u(t) of (CP; uy) converges weakly
in H as t - 0.

(b) F(¢)# .

(c) For every uge D(4°) the solution u of (CP;u,) is bounded on
[0, ).

In Theorem 2 the assertion (¢) — (b) is a consequence of Theorem 1 and
{a) — (c) is trivial. Therefore we shall give the proofs of assertions (b) — (c)
and (c) - (a).

Remark 1. Let u and v be respectively the solutions to (CP;u,) and
{CP; v,) with ug, vo in D(4°). Then we have (cf. [11, Chap. 1, Sect. 1.27)

fu(t) — o(t)] g < |uls) —v(s)} for all s, re [0, oc) with s<r.
Taking this fact into account, we can replace (c) of Theorem 2 by the
following (c)":

(c) There is at least one element u, in D(¢°) such that the solution u
to (CP; uy) is bounded on [0, o).
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2. PROOF OF THEOREM 1

Throughout this section we fix u, in D(¢°) and let u be the solution to
(CP; up).

ProPOSITION 1. Suppose (A) holds with the following condition (D):
(D) There is a constant cy =0 such that

() +ceollzly+1)=0  forall ze H and 1 =0.

Further suppose u is bounded on [0, oc ). Then we have:

(i) lim,_ . ¢'(u(t)) exists and is finite.
(i) ' eL*0, co; H).

We now recall (see [ 11, Chap. 1]) the following type of energy inequality
for the solution u, which plays an important role in our argument and
holds under (A) and (D): if |u(t)|y<rfor 0<1< T (<), then

N
#(u(2)) = $(u(s)) + 5 [ 1) 13 de
<[ k() Ful0) + ko)) o (1)
for every 0 < s <1< T, where
k@ =4[@@P+1BUD) and k(1) =k, (D){1 +4eo(r+ 1)}

with functions a,, b, in (A); note that k, ;e L'(0, o0), i=1, 2.

Proof of Proposition 1. Suppose |u(t} ;< for all = 0. Then it follows
from (2.1) that

re
5

¢'(u(2)) < @ (uls)) + J {k, (1) ¢°(u(r)) + k,o(1)} do
for every 0 <s <1< 0. Therefore, by Gronwall’s inequality,
# ey < g ex ([ o) )

+ [ ks exp (f k,.(0) da> dt (2.2)

s
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for every 0 <s << 0. Taking s=0 in (2.2), we obtain
¢"(u(1)) < (16°(uo)l + 1k, 2 11(0,00)) €XP 1Kyl 1100y = M < 0
for every 1= 0. From this inequality with (D) we infer that
[ () < @' (u(8)) + 2¢o(r + 1) S M+ 2c0(r+ 1) =M,

for every 1 =0. Thus ¢ — ¢'(u(t)) is bounded on [0, =c). Next, from (2.1}
again it follows that

1 N ! bl
5 Jo ' (o) % dt <2My + Mk, 1| 10,000+ Ko 2l 10,05
for every ¢> 0, which implies u’ € L*(0, oo; H). Putting for each 1> 0

Ty =) +3 [ 1@ de [ {h, () §7(e)) + ot} i,

we see from (2.1) that J(¢) is non-increasing in ¢, so that lim, , ., J(r) exists
and is finite. Therefore, so is lim, _, . ¢*(u(2)). Q.E.D.
LEMMA 1. Conditions (A) and (B) imply (D).

Proof. As is already known (cf [11, Chap. I, Sect. 1.5]), under (A)
there is a constant ¢, for each 7'> 0 such that

() +tedlzlgz+ 1) =0 for all ze Hand 0<¢<T.

Also, according to a result of Fujiyama and Watanabe [9], under (B) there
are constants 7> 0 and ¢’ >0 satisfying

p(z)+cl|z] x+1) =0 forall ze Hand 12> T.

From these inequalities condition (D) is derived. Q.E.D.

Proof of Theorem 1. We note that Proposition | is valid under our
assumptions by Lemma 1; hence
mo= lim ¢"(u(z))
{— C
exists and is finite. We have Q, (u,)# & by the boundedness of u on
[0, ). Now, let z, be any point of Q (u,) and let {z,} be the sequence

such that ¢,7 oo and u(t,) — z, weakly in H. Then, by Proposition 1 and
(b1) of (B), we have

$*(2o) < lim inf ¢(u(t,)) = my < oo, (2.3)
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and hence z,€ D(¢™). Next, choose a sequence {s,} with s, oo such that
—u'(s,)€0p°(u(s,)) and u'(s,) — O strongly in H. Let z be any point of
D(¢>), and by (b2) of (B) take a sequence {z,}c H such that z,—z
strongly in H and ¢*(z,) = ¢*(z). Then, by the definition of subdifferen-
tial, we see that

( _u,(sn)a Zp— u(sn))H < ¢S"(Zn) - ¢Sn(u(sn))'
Passing to the limit in # yields

mo= lim ¢*(u(s,)) < lim ¢*(z,)=4*(z). (24)

n - 0

In particular, if z = z,, then (2.4) implies my < ¢*(z,). From this with (2.3)
and (2.4) we infer that ¢™(zy) =min ¢*. Thus the theorem is proved.
Q.E.D.

3. PROOF OF THEOREM 2

We give only the proofs of {c})— (a) and (b) — (c).

Proof of (c)—(a). Let u, be any element of D(¢°) and suppose the
solution u to (CP;uy) is bounded on [0, o). Then, according to
Proposition | and Theorem 1, we have u'eL*(0, oo; H), Q,(uy)# &,
Q (ug) = F(¢™) and bim, _,  ¢(u(¢)}=min ¢™. In order to show the weak
convergence of u(?) in H as t— oo it suffices to prove that 2, (u,) is a
singleton. Now, let #, and i, be in 2 (u,). Correspondingly to the
element v, by using (b2)" and (B)" we find w: [0, c0) = H, a e L%(0, cc),
and fe L'(0, o) such that

iw(ty—u )y <alr), @'(w(1)) —min ¢* < (1) for 1=20. (3.1}

We then observe that

1 d 5
EEW(I)““OJH

=(=u' (1), us — (1))

=(—u'(t), w(t) —ul(t)) y + (=1’ (1), U —W(1))

<P (w(1)) — @' (1)) + ' ()| g |W(1) — 5 | 1

= ¢*(w(1)) —min ¢~ +min $ — ¢*(u(2)) + [1'())| r W (1) = st
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for a.e. t>0. Here, using (3.1) and (1.1) with r>sup{|u(?)| ;: 0<1< 0},
we obtain that

1d

57 ) = Ul L <P + 0, ()L + [ (D) + 1 ()] g )= p(z)  (3.2)

for a.e. 1= 0. Since pe LY0, »), it follows that

u(t) — u,, |12 < |u(s)—um|§,+2f p(t)de  for every 0<s<1< o0,

5

and hence /=1lim, |u(r) —u, |2 exists. Similarly T=lim, ,  |u(t)—i|%
exists. Therefore,

[=T=lim {—=2(u(t), 4y — o) e+ Uy — i |5}

I — oo

Since u(t,)—> u, weakly in H for some sequence {z,} with 7,1 cc, we
obtain that /—T= —|u,—i|%. Similarly 7—I/= —|u, —ii|%. This
implies |u,, — i, |z =0, i¢c., u, =i_. Thus Q, (uy) is a singleton. Q.E.D.

Proof of (b) = (c). By assumption, F(¢*)# . Let z_. € F(¢ ), and by
using (b2} of (B) take functions w: [O, )= H, oeL*0, ) and
BeL'(0, 50) such that

a(t) =0, p(ty—0 as t— oo
and
w(t)—z .| g <a(t), G (w(t)) —min ¢ ™ < f(1) for =0

We fix a sequence {s,} with 1,100, and denote by u, for each »n the
solution to

(CP)n —u;z(t)e a¢t(un(t))’ 1, <1<0, n(l ) Zns

where z,=w(t,). We take a positive number L such that |z,|,<L and
l¢"(z,) <L for all n. Also, let r, be a fixed positive number with
ro> L+ 1z, and define for each n

T,=sup{T;t,<T<oc,|u(t)—z,lg<rofor 1, <t< T}

note that T,>t,. We want to show that 7,= o0 for a certain n, which
implies the boundedness of u,, on [1,, o). Now, for the contrary suppose
that 7, < oo for all n. Then, putting

rziZwIH+r0+1
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and noting that |u,()|y < |zoly+Fo<rforall tet,=[t,, T,], we obtain
by (2.1)

F i)~ #0945 [ 0

J {eon(1) 470D + o)} d (33)

for every s, teJ, with s<t.
Now, we show that there is a constant L, > 0 such that

|6 (u, () < L, for all rteJ, and n=1, 2,..., (3.4)
and
] 200,0my S Ly for n=1,2,... (3.5)
Indeed, just as in the proof of Proposition 1, it follows from (3.3) that
F(1,(1) < (167(2)] + Kol 1300, €XD 1K i,
<L+ 1Kol 110.00)) €XP [k 1| 100, 0) = M
for all reJ, and n=1, 2,.... Hence, the inequality in condition (D) yields

[0 (u, (N SM+2c(r+1)=M, for all teJ,and n=1, 2,..,

and subsequently

|”:z|2LZ(J,,;H) <4M, +2M, |kr,1|Ll(0,oo) +2 |kr,2| L(0,0) = M,

for all teJ, and n=1, 2,.... Accordingly, if we put
Li=M +M

then (3.4) and (3.5) hold.
Next, we show that there is a sequence {A4,} of non-negative numbers
such that 4, —» 0 and

luT,)—z0145<A4, for n=1,2,... (3.6)
In fact, just as (3.2) in the proof of (b) — (c), it holds that

2dt Iu (1) = 2| 5 <B@)+ 1 e)(1 + 1§ (, () + | (1)] 4 (2)
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for ae. teJ, and n=1,2,., where #, is as in (l.1). Integrating this
inequality over J, and using (3.4) and (3.5), we see that

Ul T) =zl <t +2 [ {B@)+(1+L)n(0)} e

= 1/2
+2L, (J a(t)? dr)

n

for all n. Therefore we can take as A, the right-hand side of the above
inequality.
From (3.6) it follows that

(T, =zl <Fg for large n,

which contradicts the definition of T',. Consequently, it holds that 7, = oo
for a certain n, and hence u, is bounded on [¢,, oc) for such an integer .
Combining this with the facts in Remark I, we see immediately that any
solution to (CP; u,) with u, in D(¢°) is bounded on [0, oo ). Thus the proof
of (b} — (c) is complete. QED.

4. APPLICATIONS

In this section we give two applications. For simplicity we set
H=L*0,1) and X =W"(0, 1)(= C([0, 1])).

Application 1. We first consider the problem (V) mentioned in the
Introduction. Let g= g(x, t), f=f(x, 1) be functions on [0, 1]x [0, o)
such that g(-, 1)e X and f(-, t) e H for every 720, and suppose the follow-
ing conditions (i)—(iii) are satisfied:

(i) ¢, <g<c,on [0,1]x[0, oo) for positive constant c,, ¢,.

(ii) There are functions gyoe W"'(0, 0)n W0, 0) and
g,€ W"0, oo ) such that

lglx, 1) — glx, s)| < | golt) — gols)| for all xe[0,1] and s, t€ [0, ).
and
lg. 1) — gl s)u<lg(t)—gi(s)]  forall s, re [0, o).
(iti) There is a function f,e W"'(0, co) such that

0= SCla<Ifo(d)—fols)] - foralls, 1€ [0, o).

505/62/1-6
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Under these conditions we easily see that
g, t)— g2 stronglyin X as 1 — o«
and
[ t)> fy strongly in H as t — o
for some g€ X and f,_ € H. We set
K(t)y={zeX;0<z<g(, 1) on [0, 17}, 0<r<w,
and
K,.={zeX;0<z<g,on[0, 13}
Also, for each t >0 we define ¢": H— (— 0, o ] by
¢'(z) =3z 15— (fC,h2)y i zeK(2),
= otherwise,
and ¢ H—->(—oc, 0] by
7 () =31z} — ([, D) A z€K,,
=0 otherwise.

Evidently ¢/, 0 <r< o0, is proper Ls.c. and convex on H, and D(¢°) = K{¢)
(0<tr<w)and D(¢*)=K.

Lemma 2. Let s, te [0, o0) and z€ K(s). Then the function

X, 1
5(x):g( )z(x)
glx, 5)
. belongs 10 K(t) and satisfies that
12—zl <180(2) — gols)] (4.1

and

1¢°(2) — ¢"(2)] < C{l go(t) — gol9)] + | g1(1) = g4 (5)|
+ 1 folt) = fols) H1 + 1g*(2)]), (42)

where C is a positive constant independent of s, t and z. Hence {¢'} satisfies
condition (A).
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Proof. We easily see Ze K(r) and (4.1). Also, we observe that

|2,(0)]* = |z.(x)|?

.0 SRRt )= tn ) B o

glx,s) glx,s) g(x, s)
g(x, 1)]? ) 2 | 2x) PP
= -1z —_
(lg(x, ) LN e
X gx(xs l) - g_\f('xa S) g(x’ t) )
g(x, 5)
2z(x) z,(x) g(x, t)( B g(x, 1))
+ 2%, )’ g.(x, 1) — g.(x, s)g(jx’ 5

for a.e. xe[0, 1], so that by our conditions

HZ(0)]* = 2.(0)1%) S M {] 8o(1) — go()] [2.(x)]> + 1 g%, 1) — gl 5)1
+1g.(x, 9)I*1 go() — gols)I?
+18.(x, 1) — g.(x, s)] |z,(x)|
+180(2) — gol(s) 1 g4(x, $)| |z.(x)1 }

for a.e. xe [0, 1], where M, is a positive constant independent of s, ¢ and z.
By integrating this over [0, 1] we get an inequality of the form

HEL 7 — lzxl 3] S Mol go(r) — go(s) + 1 (1) — g1 ()N + 12,4 3),
(4.3)

where M, is a positive constant independent of s, 7 and z. Besides, we have
|(f(’ t): Z)H_ (f(’ S): Z)HI
<SG 1Z—zlg+ 16— 68wzl
S M5(1go(1) — go(S) + Lfol£) — fols)}) (4.4)

where a constant M5 >0 is also independent of s, r and z. From (4.3) and
(4.4) we easily infer (4.2) with a suitable constant C > 0 independent of s, ¢
and z. If we take a,(t)= go(r) and

bAN=C [ {Igh(@) + | £i(2)| +175(0)1} .

then condition (A) holds.
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LemMmA 3. {¢'} satisfies condition (B)'.

Proof. 1t is easy to verify (bl) of (B). Let z be any point in D(¢*), and
set

)=g(x, )
go(X)

Then w(,, t)eK(t) and w(x, t)= g(x, t) w(x, s)/g(x, s) for any s, t=0.
Hence by Lemma 2 we have

w(x, ¢ z(x) for (x, t)e [0, 1] x [0, o).

w(, 1) —w(, $)| 4 <1 80(1) — &o(s)]
and
19" (w(:, 1)) — ¢°(w(, )| < C{Igo(t) — go(s) + [ g1(1) — £1(5)]
+ 1 fo(t) = fo($) (L + [4°(wC:, s)))-
Now, letting s — co yields that
Iw(:, 1) =zl p < | gol2) = a(t)
and
16 (w(, 1)) — ¢ (2)| < C{l go()] + | g1 () + Lfo() }(1 + [ (2)]) = B(1)
for all 1> 0. Clearly w, o and § satisfy the desired properties in (b2)".
Q.E.D.
Lemma 4. ¢(z)+ C{l go(t) + [ g1(0) + | fo() }(1 + 4°(2)]) > min $*
forall t20 and ze H.
Proof. 1t is easy to see that ¢ has min ¢. Now, let ze K(¢) and put

g(x, s)
g(x, 1)

w(x, s)= z(x), 0<x<l, s=0..

Clearly w(-, s) =z strongly in X as s — co for some z, € K. From (4.2)
or Lemma 2 it follows that

¢ (w(:, 5)) — ()
< C{1g0(s) — go()] + 1 £1(s) — g1()] + 1 fol(s) — fo(D) H1 + 14°(2)]),

so that letting s — oo gives that

[9(20) — $°(2)I < C{I go(D] + | &1(D] + [ fo(D) } (L + 4" (2)])-
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Thus

¢'(2) + C{lgo(t) + [ (D) + 1 f6(D) J(1 + [4(2)])
> ¢%(z,.) > min ™. QED.
PROPOSITION 2. Let u, be in K(0) (=D(¢°) and u=ul(x,t) be the

solution of problem (V). Then u(:, t) converges strongly in X as t - « and
the limit u. is a solution of the variational inequality

(V)oo uaoEKooo (uoo,x’ uoo,x_zx)Hg(foos uoo_Z)H for allZEKOO'

Proof. As is seen from the definition of subdifferential d¢’, problem (V)
is equivalent to Cauchy problem (CP; u,). In view of Lemmas 2, 3 and 4 all
the assumptions of Theorem 2 are satisfied. It is easy to see that
F(¢*™) # . Hence the applications of Theorems 1 and 2 give

u(y t) > uy, weakly in H as t > o« {4.5)
for some u,, € F(¢™) and
¢'(uC, 1)) > 7 (uy(u,))=min g=  as - co. (4.6

From (4.5) and (4.6) it immediately follows that u(:, ) > u_, weakly in X
and |u(, 1)}y — |u..| x as £ — oo, which implies u(-, ) > u_, strongly in X as
t - 0. Since the relation 0e€ d¢>(u,.) is equivalent to (V). , the proofl of
the proposition is thus complete. Q.ED.

Application 2. As another application we consider the heat equation
with temperature controls through the boundary of the following type:

u,— uxxzf on (0’ 1))( (07 Oo)v (47)
u(x, 0) = uy(x) for 0<x<, (4.8)
go(t) < u(0, 1) < hy(e) for 0< 1< oo,

U0+, ) <yolgo(r)) i u(0, 1) = go(?),

(4.9)
U0+, 1) =ypo(u(0, 1)) if go(z) <u(0, 1) <hol1),
U0+, 1) Zy0(ho(2))  if w(0, 1) =hq(t),
2.1} <u(0, 1) < hy(2) for 0<r< o0,
—u (1=, 1)<y,(g,(2)) ifu(l, £)=g,(1), (4.10)

—u (1=, 0)=y,(u(1, 1)) if g,(1) <u(l, 1) <h,(2),
—ux(1=, )2 y:(hi (1)) i u(l, £) = h,(2),
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where u, is a function on [0, 1], fon [0,1]x[0, ) and g;, &, (i=0, 1)
are absolutely continuous functions on [0, o); y, (i=0, 1) are functions on
R. We assume the following conditions (i)-(iv) are fulfilled:

(i) f(,t)e H for any ¢t >0 and there is f,€ W"!(0, oo) such that

G =F6a<Ifo(—fols)l  forall s, 1€ [0, ).

(11) gz’7 hz{ELl(O’OO)nLZ(OsOO)’ gi_gi,ooELl(O>oo)mL2(0’w)
with g, =lim,_ g(s), and h,—h, eL'(0,0)nL*0,00) with
h=1lim,, k), i=0,1.

(i) g,<h;on [0,0)and g, <h;,,1=0,1

(iv) 'y, is continuous and non-decreasing on R, i=0, 1.

In order to reformulate the problem (4.7)-(4.10) as a Cauchy problem of
the form (CP; u,) in H, we use proper ls.c. convex functions ¢‘ on H for
0 <1< oo which are given by

¢(2) =351z~ (S, 1), 2)u + To(z(0)) + I'i(2(1))  if zeK(1),
= 0 otherwise,
where I'; is the primitive of y, satisfying 7'(0)=0 (i=0, 1) and
K(t)={ze X; go(t) <z(0) < ho(1), g,(1) <z(1)< (1)}
Also, we define a proper Ls.c. convex function ¢* on H by

$°(2) =425 — (fuo, 2)u + To(2(0)) + Ty(2(1))  if zeK,,

0 otherwise,

i

i

where [, is the strong limit of f(-, ) in H as t — oo and
Koo = {ZEXa gO,oo <2(0)<h0005 gl,oo <Z(l)ghl,o‘o}'

LEMMA 5. Let z*, z€ H. Then the relation z* € 0¢'(z) is equivalent to the
Jollowing system:

z¥=—z  —f(, 1) on (0,1) (in the distribution sense), (4.11)

go(1) < 2(0) < ho(2),

z.(0+)<yo(go(?))  if 2(0)=go(1),
z,(0+)=7,(2(0)) i gol(£) < z(0) < ho(2),
z20+) Zyolho(t)) I 2(0)=ho(2),

(4.12)
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g1(t) < z(1) < hy(1),

—z,(1-)<yg:(1)) i z(1)=g:(1),
—z(1=)=7.(z(1)) ¥ glt)<z(1)<hy(z),
—z (1=)Zy (i (t) i z(1)=hy(2).

Proof. First assume z* € 0¢'(z). Then by the definition of ¢’ we have
gy <z(i)<hft) (i=0,1) and

(2% y—2)u<d'(y)—¢'(z)  forall yeK(r).

Now, taking as y the function rp + (1 —r)z with pe K(¢) and 0 <r <1, and
letting r | 0, we obtain

(4.13)

(2% p—2)g<(zg px—2)u— (S 1) p—2)y
+70(2(0))(p(0) — (0)) + y 1 (z(1))p(1) — 2(1)).  (4.14)
If p has the form +#+ z with ne€ (0, 1), then (4.14) implies
2 M < 220 1)aF U6 0, D e

Therefore (z*, 1)y = (2., N) g — (S, 1), 1) g, which shows (4.11). By using
integration by parts in (4.14) and noting (4.11) we get

0< {70(2(0)) — 2,(0+ ) } (p(0) — 2(0))
+ {nlz(1=) +2,(1-)}p(1) - =(1)) (4.15)
In the case where z(0) = g,(¢), choose as p the function &(1 — x) + z(x) for a
small ¢>0. Then it follows from (4.15) that z (0+ ) <74(2(0)) = yo( go(t))-
Similarly, if z(0) = hy(z), then z (0+ )= y4(2(0)) =y,(t)). Also, in the case
where go(t) < z(0) < ho(2), choose as p the function +&(1 —x)+z{x) for a
small ¢>0. Then from (4.15) we derive z {0+ )=17,{z(0)). Thus (4.12)

holds, and (4.13) can be similarly shown.
Conversely, assume (4.11)-(4.13) hold. Then for any y e K(t)

(2% y—2)y= =2, ¥y =)y — (F(. 1) y = 2)p
=z ¥ 2)a— (f( 1), y—2)u
+ 20+ )(3(0) —2(0)) —z (1 = )(y(1) — z(1))
S0 ye—2dn— (G 1), y—2)u
+70(2(0))(¥(0) — 2(0)) + y(z(L)) »(1) — 2(1))
<P () —¢'(2),
so that z* € 0¢'(z). Q.E.D.
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In view of Lemma 5 it is easily understood that problem (CP;u,) is a
variational formulation of problem (4.7)-(4.10).

LEMMA 6. Let s, te[0, o) and ze K(s), and let 8,, i=0, 1, be numbers
in [0, 1] satisfying

2(i)=0,g,(s)+ (1 —6,) hy(s).
Then the function
Z(x) = z(x) + (1 = x){0( &o(t) — go(s)) + (1 — Bo)(ho(2) — ho(s))}
+x{0:(g1(0) = gi(s) + (1 =0) () — ()}
belongs to K(t) and satisfies
|2 — 20 <1 80(2) = gols)] + |ho(t) — ho(3)]

+ 181(2) = g1(s) + 1A, (£) = Ay (s)] (4.16)
and

1°(2) — °(2)] < C{1 80o(1) — &ols)| + ho(£) — ho(s)] + ] &1(1) — g:(5)I
+ 11 (8) = hy() + /o) = fo() L+ 14°(2)]),  (4.17)

where C is a positive constant independent of s, t and z. Hence {¢'} satisfies
condition (A).

Proof. Clearly Ze K(¢) and (4.16) holds. For simplicity we denote by
G(t, s) the right-hand side of (4.16). By an elementary computation we get

25— 125 S C'G(t )1+ |z, ) (4.18)
with a constant C' > 0 independent of s, ¢ and z. Also, putting
L,=sup{ly{r)l; g{t) <r<h1),0<1< o},  i=0,1,
we observe that
|F(2(1)) — Ii(z())]
=|I'(8;8L0)+ (1= 0)) k(1)) — I'(0,8s) + (1= 0,) hy(s))]
<L{lgdr)— g+ [h{)—hys)},  i=0, L (4.19)
Besides we have
(G, 1), ) — (G, ), 2)
<G OulZ=2ly+ 1S )= fC 9l u l2ln
S C{G(1, 8)+ | £olt) = fo(S)] |2] &} (4.20)
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with a constant C” independent of s, ¢t and z. From (4.18)-(4.20) it follows
that (4.17) holds with a constant C >0 independent of s, ¢ and z. Finally, if
we take

al0)=b,(0=(1+C) [ {1 8:(x)] + Ihifc)]
+1g )+ AT + 1 fo(o)l } dr,

then condition (A) is satisfied. Q.ED.

LEMMA 7. {¢'} satisfies condition (B)'.

Proof. 1t is easy to verify (bl). Now, let z be any point of K, and let

Z(l)=91gt,oc+(1_01)hl.ocv Ogelsl’ l=0, 1

We put w(x, 1) =z(x) + (1 = x){0o( go(t) — go,0c) + (1 = 0p)(ho(1) — by o) } +
x{0,(g1()— g1.) + (1 =0)(h(t)—h, .)}. Clearly w{-,t)eK(r) and
w(x, ) =w(x,s) + (1—=x){0(go(t) — gols)) + (1=00)(holt) — hols))}
+ x{0(g:(t) — g:(s)) + (1 — 6,)(h, (1) — hy(s))} for any s, 1€ [0, o).

Therefore, just as in the proof of Lemma 3, by making use of Lemma 6 we
can show that the functions w: [0, ) — H,

a(£) =1 80(1) = go.c0l + 1ho(t) = ho | +18:(1) — g1l + 1 Ay(1) =1y .|

and
B(t) = Cla(z) + 1 fo(D)(1 + |47 (2)])
have the required properties in (b2)". Q.E.D.
Lemma 8.

$'(2) + C{1go(1) — ool + 11o(t) = ho o] + 181() — &1 0]
+ B ()= hy o] + [ fo()) }(1+1¢°(2)]) > min ¢
forall t=0 and ze H.

Proof. The inequality of the lemma can be derived by making use of
Lemma 6, just as that of Lemma 4. Q.ED.

By virtue of Lemmas 6-8 we can apply our abstract results to obtain the
following proposition.

PrROPOSITION 3. Let u, be in K(0)(=D(¢")) and u be the solution to



92 FURUYA, MIYASHIBA, AND KENMOCHI

(CP; ug). Then u(-, t) converges strongly in X as t — co and the limit u, is a
solution of the system

—Ugx=fe 00 (0, 1),

8o S (0)< hg o s

U (0+) <70(80.0) if 1,,(0) = £0,>

U {0+ ) =7o(u(0)) if 80,00 <UL(0)<hg s
U (0+) = 70(h0 ) if u(0)=hg o,

Sl St (1)< hy .,

U (1) <Y1(81)  Hug(l)=g1 0,

g (1 =)=71(ug(1)) gy <un(l)<hy .,
—tgp (1=) 271l o) fu(l)=h .

5. A GENERALIZATION

In this section we give a generalization of Theorem 1 to the case of
Cauchy problem

(CP; B, ug) —u'(t) e 0¢'(Bu(t)), 0<t< oo, u(0)=uy,,

where B is a single-valued operator from D(B)= H into itself such that

(Bz—Bz,,z—z,)y>M |Bz— Bz,|%,

|Bz—Bz||lpzM |z—2z|4 for z,z, e H,

for positive constants M, M’, and B is supposed to be the subdifferential of
a finite continuous convex function on H. By a result of [10] (or [11,
Chap. 2, Sect.2.8]), under conditions (A) and (C) in Corollary2 to
Theorem 1, (CP; B, u,) admits at least one solution u for each uy,e H with
Bu, in D(¢°); by a solution of (CP;B,u,) we mean a function
u: [0, c0) = H such that ue W"*(0, T; H) for every 0 < T < o0, u(0) = u,,
the function ¢—¢'(Bu(t)) is locally bounded on [0, ) and
—u'(t) e 0¢*(Bu(t)) for ae. te [0, o).

PROPOSITION 4. Suppose (A), (B) and (C) hold, and let uye H with
Buye D(¢°). Let u be a solution to (CP; B, u,) which is bounded on [0, ).
Then we have:
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(i) lim, ,¢'(Bu(t))=min ¢*.
(ii) The set of all strong cluster points of Bu(l) as t — o is not empty
and contained in F(¢*).

In this case, instead of (2.1), we have the following type of energy
inequality (cf. [10] or [11, Chap.2, Sect.2.8]) for a solution u to
(CP; B, uy): if |Bu(t))|y<rfor0<r<T (<o), then

#Bul) ~ ¢ Buts) + 2 || & Bu(o)| e
<[ (Foal0) $(Bul)) + K. of0)) do (5.1)

for every 0 <s <t < T, where

~

k()= a (PP +160)), k() =K (D) {1 +deo(r+ 1)}

MM

with the same constant ¢, of condition (D). By using (5.1) we can prove
Proposition 4 just as Theorem 1 and its Corollary 2.
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