12 research outputs found

    A new method for registrationbased medical image interpolation

    Get PDF
    Abstract—A new technique is presented for interpolating between grey-scale images in a medical data set. Registration between neighboring slices is achieved with a modified control grid interpolation algorithm that selectively accepts displacement field updates in a manner optimized for performance. A cubic interpolator is then applied to pixel intensities correlated by the displacement fields. Special considerations are made for efficiency, interpolation quality, and compression in the implementation of the algorithm. Experimental results show that the new method achieves good quality, while offering dramatic improvement in efficiency relative to the best competing method. Index Terms—Interpolation, reconstruction, registration. I

    In Vitro Fluid Dynamics of Stereolithographic Single Ventricle Congenital Heart Defects From In Vivo Magnetic Resonance Imaging

    Get PDF
    Background: Single ventricle congenital heart defects with cyanotic mixing between systemic and pulmonary circulations afflict 2 per 1000 live births. Following the atriopulmonary connection proposed by Fontan and Baudet in 1971, the present procedure is the total cavopulmonary connection (TCPC), where the superior vena cava (SVC) and inferior vena cava (IVC) are sutured to the left pulmonary artery (LPA) and right pulmonary artery (RPA). However, surgeon preference dictates the implementation of the extra-cardiac and intra-atrial varieties of the TCPC. Overall efficiency and hemodynamic advantage of the competing methodologies have not been determined. Hypothesis: It is hypothesized that an understanding of the experimental fluid dynamic differences between various Fontan surgical methodologies in the TCPC allows for power loss evaluation toward improved surgical planning and design. Methods: Toward such analysis, a previously developed data processing methodology is applied to create an anatomic database of single ventricle patients from in vivo magnetic resonance imaging (MRI) to examine the gamut of TCPC anatomies. From stereolithographic models of representative cases, pressure and flow data are used to quantify control volume power loss to measure overall efficiency. particle image velocimetry (PIV) is employed to detail flow structures in the vasculature. Results are validated with dye injection flow visualization and 3-D phase contrast magnetic resonance imaging (PC-MRI) velocimetry, highlighting flow phenomena that cannot be captured with in vivo MRI due to prohibitively long scanning times. Preliminary results illustrate the variation of control volume power loss over several TCPC anatomies with varying flow conditions, the application of PIV, and validation approaches with 3-D PC-MRI velocimetry. Data from control volume power loss evaluation demonstrate a correlation with TCPC anatomy, providing added clinical knowledge of optimal TCPC design. Findings from PIV and 3-D PC-MRI velocimetry reveal a means for quantitatively comparing flow structure. Dye injection flow visualization offers qualitative insight into limitations of the selected velocimetry techniques.Ph.D.Committee Chair: Yoganathan, Ajit P.; Committee Member: Fogel, Mark A.; Committee Member: Oshinski, John N.; Committee Member: Parks, W. James; Committee Member: Skrinjar, Oska

    Fontan Hemodynamics: Importance of Pulmonary Artery Diameter

    Get PDF
    We quantify the geometric and hemodynamic characteristics of extracardiac and lateral tunnel Fontan surgical options and correlate certain anatomic characteristics with their hemodynamic efficiency and patient cardiac index. The study was conducted retrospectively on 22 patients undergoing Fontan operations (11 extracardiac and 11 lateral tunnel operations). Total cavopulmonary connection geometric parameters such as vessel areas, curvature, and offsets were quantified using a skeletonization method. Energy loss at the total cavopulmonary connection junction was available from previous in vitro experiments and computational fluid dynamic simulations for 5 and 9 patients, respectively. Cardiac index data were available for all patients. There was no significant difference in the mean and minimum cross-sectional vessel areas of the pulmonary artery between the extracardiac and lateral tunnel groups. The indexed energy dissipation within the total cavopulmonary connection was strongly correlated to minimum cross-sectional area of the pulmonary arteries (R2 value of 0.90 and P \u3c .0002), whereas all other geometric features, including shape characteristics, had no significant correlation. Finally, cardiac index significantly correlated with the minimum pulmonary artery area (P = .006), suggesting that total cavopulmonary connection energy losses significantly affect resting cardiac output. The minimum outlet size of the total cavopulmonary connection (ie, minimum cross section of pulmonary artery) governs the energy loss characteristics of the total cavopulmonary connection more strongly than variations in the shapes corresponding to extracardiac and lateral tunnel configurations. Differences in pulmonary artery sizes must be accounted for when comparing energy losses between extracardiac and lateral tunnel geometries

    Hematospermia Evaluation at MR Imaging

    No full text
    Hematospermia is a challenging and anxiety-provoking condition that can manifest as a single episode or recur over the course of weeks to months. It is usually a benign self-limiting condition in younger sexually active males without a history of risk factors such as cancer, urogenital malformations, bleeding disorders, and their associated symptoms. However, patients with recurrent, refractory and painful hematospermia with associated symptoms, such as fever, pain, or weight loss, require evaluation through clinical assessment and noninvasive investigations to rule out underlying pathologic conditions such as ejaculatory obstruction, infectious and inflammatory causes, malignancy, vascular malformations, and systemic disorders that increase the risk of bleeding, especially when presenting in older men. If these investigations are negative, the patient should be reassured and treated accordingly. In the recent past, magnetic resonance (MR) imaging has assumed a major role in the investigation of hematospermia due to its excellent soft-tissue contrast and multiplanar capabilities. In this review, we will discuss the potential causes of hematospermia and its diagnostic workup, including pathophysiology, anatomic considerations, the imaging appearance of associated pathologic conditions, and management. (C) RSNA, 2016 . radiographics.rsna.org6 month embargo; published online: 12 August 2016This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore