22 research outputs found

    Predicting Directions of Changes in Genotype Proportions Between Norovirus Seasons in Japan

    Get PDF
    The norovirus forecasting system (NOROCAST) has been developed for predicting directions of changes in genotype proportions between human norovirus (HuNoV) seasons in Japan through modeling herd immunity to structural protein 1 (VP1). Here 404 nearly complete genomic sequences of HuNoV were analyzed to examine whether the performance of NOROCAST could be improved by modeling herd immunity to VP2 and non-structural proteins (NS) in addition to VP1. It was found that the applicability of NOROCAST may be extended by compensating for unavailable sequence data and observed genotype proportions of 0 in each season. Incorporation of herd immunity to VP2 and NS did not appear to improve the performance of NOROCAST, suggesting that VP1 may be a suitable target of vaccines

    Plastin Family of Actin-Bundling Proteins: Its Functions in Leukocytes, Neurons, Intestines, and Cancer

    No full text
    Sophisticated regulation of the actin cytoskeleton by a variety of actin-binding proteins is essential for eukaryotic cells to perform their diverse functions. The plastin (also know, as fimbrin) protein family belongs to actin-bundling proteins, and the protein family is evolutionarily conserved and expressed in yeast, plant, and animal cells. Plastins are characterized by EF-hand Ca2+-binding domains and actin-binding domains and can cross-link actin filaments into higher-order assemblies like bundles. Three isoforms have been identified in mammals. T-plastin is expressed in cells from solid tissues, such as neurons in the brain. I-plastin expression is restricted to intestine and kidney; the isoform plays a vital role in the function of absorptive epithelia in these organs. L-plastin is expressed in hematopoietic cell lineages and in many types of cancer cells; the isoform is thus considered to be a useful biomarker for cancer

    Surface microstructures and oxygen evolution properties of cobalt oxide deposited on Ir(111) and Pt(111) single crystal substrates

    No full text
    Abstract We investigated the oxygen evolution reaction (OER) activity changes of cobalt oxide (CoOx) thin films on Ir(111) and Pt(111) substrates by repeated OER measurements in 0.1 M KOH. Atomic force microscopy and X‐ray photoelectron spectroscopy analysis of the as‐prepared CoOx/Ir(111) and CoOx/Pt(111) showed similar surface morphologies of the CoOx thin films and almost the same OER overpotentials, which were estimated to be around 430 mV. However, after three OER measurements, the overpotential of CoOx/Ir(111) decreased by 70 mV, whereas that of CoOx/Pt(111) increased slightly. Structural analysis showed that CoOx/Ir(111) revealed the island‐like nanostructures of CoOx dispersed on Ir(111) surface, accompanied by the generation of CoOOH. In contrast, for CoOx/Pt(111), the Pt(111) substrate remains covered by the CoOx thin film. The results suggest that the interaface at CoOx (CoOOH) nano‐islands and Ir(111) substrate are responsible for reducing the OER overpotential
    corecore