114 research outputs found

    Dose Measurements through the Concrete and Iron Shields under the 100 to 400 MeV Quasi-Monoenergetic Neutron Field (at RCNP, Osaka Univ.)

    Full text link
    Shielding benchmark experiments are useful to verify the accuracy of calculation methods for the radiation shielding designs of high-energy accelerator facilities. In the present work, the benchmark experiments were carried out for 244- and 387-MeV quasi-monoenergetic neutron field at RCNP of Osaka University. Neutron dose rates through the test shields, 100-300 cm thick concrete and 40-100 cm thick iron, were measured by four kinds of neutron dose equivalent monitors, three kinds of wide-energy range monitors applied to high-energy neutron fields above 20 MeV and a conventional type rem monitor for neutrons up to 20 MeV, placed behind the test shields. Measured dose rates were compared one another. Measured results with the wide-energy range monitors were in agreement one another for both the concrete and the iron shields. For the conventional type rem monitor, measured results are smaller than those with the wide-energy range monitors for the concrete shields, while that are in agreements for the iron shields. The attenuation lengths were obtained from the measurements. The lengths from all the monitors are in agreement on the whole, though some differences are shown. These results are almost same as those from others measured at several hundred MeV neutron fields

    Activation detector measurements at the hadron absorber of the NuMI neutrino beamline at Fermilab

    Get PDF
    Two-dimensional distributions of the production rates of radionuclides in aluminum and gold activation detectors, placed behind the hadron absorber of the NuMI beamline at Fermilab were obtained in an experiment for shielding data as a dump in a proton-beam-energy domain above 100 GeV. The production rates of 7 Be, 22 Na, and 24 Na in the aluminum activation detectors and those of 185 Os, 194 Au, and 196 Au in the gold activation detectors were obtained from the γ-ray spectra of HPGe counters. It was concluded that in these distributions showed some peaks that can be attributed to a lack of shielding caused by the gaps for arraignment and cooling in the hadron absorber. The radionuclides in the activation detectors were mainly produced by neutrons, protons and pions, according to analyses of calculated results by the PHITS code

    Mixed alkali-ion transport and storage in atomic-disordered honeycomb layered NaKNi2TeO6

    Get PDF
    Honeycomb layered oxides constitute an emerging class of materials that show interesting physicochemical and electrochemical properties. However, the development of these materials is still limited. Here, we report the combined use of alkali atoms (Na and K) to produce a mixed-alkali honeycomb layered oxide material, namely, NaKNi2TeO6. Via transmission electron microscopy measurements, we reveal the local atomic structural disorders characterised by aperiodic stacking and incoherency in the alternating arrangement of Na and K atoms. We also investigate the possibility of mixed electrochemical transport and storage of Na+ and K+ ions in NaKNi2TeO6. In particular, we report an average discharge cell voltage of about 4 V and a specific capacity of around 80 mAh g–1 at low specific currents (i.e., < 10 mA g–1) when a NaKNi2TeO6-based positive electrode is combined with a room-temperature NaK liquid alloy negative electrode using an ionic liquid-based electrolyte solution. These results represent a step towards the use of tailored cathode active materials for “dendrite-free” electrochemical energy storage systems exploiting room-temperature liquid alkali metal alloy materials

    Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides

    Get PDF
    Using strain to control oxynitride properties. 京都大学プレスリリース. 2020-12-01.原子空孔の配列を制御する新手法の発見. 京都大学プレスリリース. 2020-12-02.Perovskite oxides can host various anion-vacancy orders, which greatly change their properties, but the order pattern is still difficult to manipulate. Separately, lattice strain between thin film oxides and a substrate induces improved functions and novel states of matter, while little attention has been paid to changes in chemical composition. Here we combine these two aspects to achieve strain-induced creation and switching of anion-vacancy patterns in perovskite films. Epitaxial SrVO3 films are topochemically converted to anion-deficient oxynitrides by ammonia treatment, where the direction or periodicity of defect planes is altered depending on the substrate employed, unlike the known change in crystal orientation. First-principles calculations verified its biaxial strain effect. Like oxide heterostructures, the oxynitride has a superlattice of insulating and metallic blocks. Given the abundance of perovskite families, this study provides new opportunities to design superlattices by chemically modifying simple perovskite oxides with tunable anion-vacancy patterns through epitaxial lattice strain

    A High-Yielding Rice Cultivar “Takanari” Shows No N Constraints on CO2 Fertilization

    Get PDF
    Enhancing crop yield response to elevated CO2 concentrations (E-[CO2]) is an important adaptation measure to climate change. A high-yielding indica rice cultivar “Takanari” has recently been identified as a potential candidate for high productivity in E-[CO2] resulting from its large sink and source capacities. To fully utilize these traits, nitrogen should play a major role, but it is unknown how N levels influence the yield response of Takanari to E-[CO2]. We therefore compared grain yield and quality of Takanari with those of Koshihikari, a standard japonica cultivar, in response to Free-Air CO2 enrichment (FACE, +200 μmol mol−1) under three N levels (0, 8, and 12 g m−2) over three seasons. The biomass of both cultivars increased under E-[CO2] at all N levels; however, the harvest index decreased under E-[CO2] in the N-limited treatment for Koshihikari but not for Takanari. The decreased harvest index of Koshihikari resulted from limited enhancement of spikelet number under N-limitation. In contrast, spikelet number increased in E-[CO2] in Takanari even without N application, resulting in significant yield enhancement, averaging 18% over 3 years, whereas Koshihikari exhibited virtually no increase in yield in E-[CO2] under the N-limited condition. Grain appearance quality of Koshihikari was severely reduced by E-[CO2], most notably in N-limited and hot conditions, by a substantial increase in chalky grain, but chalky grain % did not increase in E-[CO2] even without N fertilizer. These results indicated that Takanari could retain its high yield advantage over Koshihikari with limited increase in chalkiness even under limited N conditions and that it could be a useful genetic resource for improving N use efficiency under E-[CO2]

    Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors

    Get PDF
    ソフトな陰イオンをもつ逆ペロブスカイト化合物で高速イオン伝導を達成. 京都大学プレスリリース. 2021-01-08.Most solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s2) in oxides (e.g., SrVO2H, BaTi(O, H)3) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H–) together with chalcogenide (Ch2–) anions to construct a family of antiperovskites with soft anionic sublattices. The M3HCh antiperovskites (M = Li, Na) adopt the ideal cubic structure except orthorhombic Na3HS, despite the large variation in sizes of M and Ch. This unconventional robustness of cubic phase mainly originates from the large size-flexibility of the H– anion. Theoretical and experimental studies reveal low migration barriers for Li+/Na+ transport and high ionic conductivity, possibly promoted by a soft phonon mode associated with the rotational motion of HM6 octahedra in their cubic forms. Aliovalent substitution to create vacancies has further enhanced ionic conductivities of this series of antiperovskites, resulting in Na2.9H(Se0.9I0.1) achieving a high conductivity of ~1 × 10–4 S/cm (100 °C)

    Research and development for accuracy improvement of neutron nuclear data on minor actinides

    Full text link
    To improve accuracy of neutron nuclear data on minor actinides, a Japanese nuclear data project entitled “Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)” has been implemented. Several independent measurement techniques were developed for improving measurement precision at J-PARC/MLF/ANNRI and KURRI/LINAC facilities. Effectiveness of combining the independent techniques has been demonstrated for identifying bias effects and improving accuracy, especially in characterization of samples used for nuclear data measurements. Capture cross sections and/or total cross sections have been measured for Am-241, Am-243, Np-237, Tc-99, Gd-155, and Gd-157. Systematic nuclear data evaluation has also been performed by taking into account the identified bias effect. Highlights of the AIMAC project are outlined

    Effect of Microstructure on Elastic Modulus of YSZ Thermal Barrier Coatings

    No full text
    corecore