887 research outputs found

    Isomorphisms of Direct Products of Finite Commutative Groups

    Get PDF
    We have been working on the formalization of groups. In [1], we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finite direct products of finite commutative groups.The 1st author was supported by JSPS KAKENHI 21240001, and the 3rd author was supported by JSPS KAKENHI 22300285Okazaki Hiroyuki - Shinshu University Nagano, JapanYamazaki Hiroshi - Shinshu University Nagano, JapanShidama Yasunari - Shinshu University Nagano, JapanKenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. Formalized Mathematics, 20(4):343-347, 2012. doi:10.2478/v10037-012-0038-5.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesƂaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.CzesƂaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.CzesƂaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.CzesƂaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Artur KorniƂowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.Artur KorniƂowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.RafaƂ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.RafaƂ Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1): 103-108, 1993.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.Wojciech A. Trybulec and MichaƂ J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990

    Isomorphisms of Direct Products of Cyclic Groups of Prime Power Order

    Get PDF
    In this paper we formalized some theorems concerning the cyclic groups of prime power order. We formalize that every commutative cyclic group of prime power order is isomorphic to a direct product of family of cyclic groups [1], [18].Yamazaki Hiroshi - Shinshu University Nagano, JapanOkazaki Hiroyuki - Shinshu University Nagano, JapanNakasho Kazuhisa - Shinshu University Nagano, JapanShidama Yasunari - Shinshu University Nagano, JapanKenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. Formalized Mathematics, 20(4):343-347, 2012. doi:10.2478/v10037-012-0038-5.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesƂaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.CzesƂaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.CzesƂaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.Artur KorniƂowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.JarosƂaw Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.RafaƂ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.RafaƂ Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1): 103-108, 1993.Hiroyuki Okazaki, Hiroshi Yamazaki, and Yasunari Shidama. Isomorphisms of direct products of finite commutative groups. Formalized Mathematics, 21(1):65-74, 2013. doi:10.2478/forma-2013-0007.Dariusz Surowik. Isomorphisms of cyclic groups. Some properties of cyclic groups. Formalized Mathematics, 3(1):29-32, 1992.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.Wojciech A. Trybulec and MichaƂ J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Conservation Rules of Direct Sum Decomposition of Groups

    Get PDF
    In this article, conservation rules of the direct sum decomposition of groups are mainly discussed. In the first section, we prepare miscellaneous definitions and theorems for further formalization in Mizar [5]. In the next three sections, we formalized the fact that the property of direct sum decomposition is preserved against the substitutions of the subscript set, flattening of direct sum, and layering of direct sum, respectively. We referred to [14], [13] [6] and [11] in the formalization.Nakasho Kazuhisa - Shinshu University Nagano, JapanYamazaki Hiroshi - Shinshu University Nagano, JapanOkazaki Hiroyuki - Shinshu University Nagano, JapanShidama Yasunari - Shinshu University Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Artur KorniƂowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.Serge Lang. Algebra. Springer, 3rd edition, 2005.Kazuhisa Nakasho, Hiroshi Yamazaki, Hiroyuki Okazaki, and Yasunari Shidama. Definition and properties of direct sum decomposition of groups. Formalized Mathematics, 23 (1):15-27, 2015. doi:10.2478/forma-2015-0002.D. Robinson. A Course in the Theory of Groups. Springer New York, 2012.J.J. Rotman. An Introduction to the Theory of Groups. Springer, 1995.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.Wojciech A. Trybulec and MichaƂ J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990
    • 

    corecore