248 research outputs found

    Turbulent Stresses in Local Simulations of Radiation-Dominated Accretion Disks, and the Possibility of the LIghtman-Eardley Instability

    Full text link
    We present the results of a series of radiation-MHD simulations of a local patch of an accretion disk, with fixed vertical gravity profile but with different surface mass densities and a broad range of radiation to gas pressure ratios. Each simulation achieves a thermal equilibrium that lasts for many cooling times. After averaging over times long compared to a cooling time, we find that the vertically integrated stress is approximately proportional to the vertically-averaged total thermal (gas plus radiation) pressure. We map out--for the first time on the basis of explicit physics--the thermal equilibrium relation between stress and surface density: the stress decreases (increases) with increasing surface mass density when the simulation is radiation (gas) pressure dominated. The dependence of stress on surface mass density in the radiation pressure dominated regime suggests the possibility of a Lightman-Eardley inflow instability, but global simulations or shearing box simulations with much wider radial boxes will be necessary to confirm this and determine its nonlinear behavior.Comment: accepted for publication in The Astrophysical Journa

    Vertical Structure of Gas Pressure-Dominated Accretion Disks with Local Dissipation of Turbulence and Radiative Transport

    Full text link
    (shortened) We calculate the vertical structure of a local patch of an accretion disk in which heating by dissipation of MRI-driven MHD turbulence is balanced by radiative cooling. Heating, radiative transport, and cooling are computed self-consistently with the structure by solving the equations of radiation MHD in the shearing-box approximation. Using a fully 3-d and energy-conserving code, we compute the structure of this disk segment over a span of more than five cooling times. After a brief relaxation period, a statistically steady-state develops. Measuring height above the midplane in units of the scale-height H predicted by a Shakura-Sunyaev model, we find that the disk atmosphere stretches upward, with the photosphere rising to about 7H, in contrast to the approximately 3H predicted by conventional analytic models. This more extended structure, as well as fluctuations in the height of the photosphere, may lead to departures from Planckian form in the emergent spectra. Dissipation is distributed across the region within roughly 3H of the midplane, but is very weak at greater altitudes. Because fluctuations in the dissipation are particularly strong away from the midplane, the emergent radiation flux can track dissipation fluctuations with a lag that is only 0.1--0.2 times the mean cooling time of the disk. Long timescale asymmetries in the dissipation distribution can also cause significant asymmetry in the flux emerging from the top and bottom surfaces of the disk. Radiative diffusion dominates Poynting flux in the vertical energy flow throughout the disk.Comment: accepted by Ap

    Thermodynamics of an Accretion Disk Annulus with Comparable Radiation and Gas Pressure

    Full text link
    We explore the thermodynamic and global structural properties of a local patch of an accretion disk whose parameters were chosen so that radiation pressure and gas pressure would be comparable in magnitude. Heating, radiative transport, and cooling are computed self-consistently with the structure by solving the equations of radiation MHD in the shearing-box approximation. Using a fully 3-d and energy-conserving code, we compute the structure and energy balance of this disk segment over a span of more than forty cooling times. As is also true when gas pressure dominates, the disk's upper atmosphere is magnetically-supported. However, unlike the gas-dominated case, no steady-state is reached; instead, the total (i.e., radiation plus gas) energy content fluctuates by factors of 3--4 over timescales of several tens of orbits, with no secular trend. Because the radiation pressure varies much more than the gas pressure, the ratio of radiation pressure to gas pressure varies over the approximate range 0.5--2. The volume-integrated dissipation rate generally increases with increasing total energy, but the mean trend is somewhat slower than linear, and the instantaneous dissipation rate is often a factor of two larger or smaller than the mean for that total energy level. Locally, the dissipation rate per unit volume scales approximately in proportion to the current density; the time-average dissipation rate per unit mass is proportional to m^{-1/2}, where m is the horizontally-averaged mass column density to the nearer of the top or bottom surface. As in our earlier study of a gas-dominated shearing-box, we find that energy transport is completely dominated by radiative diffusion, with Poynting flux carrying less than 1% of the energy lost from the box.Comment: ApJ, in pres
    corecore