26 research outputs found

    Probing low-density carriers in a single atomic layer using terahertz parallel-plate waveguides

    Get PDF
    As novel classes of two-dimensional (2D) materials and heterostructures continue to emerge at an increasing pace, methods are being sought for elucidating their electronic properties rapidly, non-destructively, and sensitively. Terahertz (THz) time-domain spectroscopy is a well-established method for characterizing charge carriers in a contactless fashion, but its sensitivity is limited, making it a challenge to study atomically thin materials, which often have low conductivities. Here, we employ THz parallel-plate waveguides to study monolayer graphene with low carrier densities. We demonstrate that a carrier density of ~2 × 1011 cm−2, which induces less than 1% absorption in conventional THz transmission spectroscopy, exhibits ~30% absorption in our waveguide geometry. The amount of absorption exponentially increases with both the sheet conductivity and the waveguide length. Therefore, the minimum detectable conductivity of this method sensitively increases by simply increasing the length of the waveguide along which the THz wave propagates. In turn, enabling the detection of low-conductivity carriers in a straightforward, macroscopic configuration that is compatible with any standard time-domain THz spectroscopy setup. These results are promising for further studies of charge carriers in a diverse range of emerging 2D materials

    Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga2O3 Crystal

    No full text
    Beta gallium oxide, β-Ga2O3, is one of the promising ultrawide bandgap semiconductors with a monoclinic (C2/m) β-phase structure showing strong anisotropic properties. To improve the performance of these devices, more optical characterization is required. Here, the anisotropic carrier dynamics in optically excited (010) oriented Fe-doped β-Ga2O3 was studied by terahertz time-domain spectroscopy. An 800 nm continuous-wave light source was employed to excite carriers from Fe acceptors to the conduction band and to probe an anisotropic interaction with the THz field. The complex THz conductivities fitted with the Drude and Drude–Smith models revealed that the optically excited carriers behave as nearly free carriers along the a-axis, whereas those along the c-axis show a non-Drude type response. The estimated mobility for the c-axis agrees with the reported values, whereas the results suggest much higher mobility along the a-axis

    Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga<sub>2</sub>O<sub>3</sub> Crystal

    No full text
    Beta gallium oxide, β-Ga2O3, is one of the promising ultrawide bandgap semiconductors with a monoclinic (C2/m) β-phase structure showing strong anisotropic properties. To improve the performance of these devices, more optical characterization is required. Here, the anisotropic carrier dynamics in optically excited (010) oriented Fe-doped β-Ga2O3 was studied by terahertz time-domain spectroscopy. An 800 nm continuous-wave light source was employed to excite carriers from Fe acceptors to the conduction band and to probe an anisotropic interaction with the THz field. The complex THz conductivities fitted with the Drude and Drude–Smith models revealed that the optically excited carriers behave as nearly free carriers along the a-axis, whereas those along the c-axis show a non-Drude type response. The estimated mobility for the c-axis agrees with the reported values, whereas the results suggest much higher mobility along the a-axis

    Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    No full text
    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices

    Magnetic anomaly of Y Sr VO 1yx x 3yd

    No full text
    Abstract YVO -SrVO system, in which the valence of vanadium ion varies depending on the contents of the oxygen and 3 3 strontium ion, has been investigated magnetically and electronically to know the behavior of the strongly correlated electron. YVO , a Mott-type insulator with a perovskite structure, is found to exhibit an anomalous magnetic behavior an

    Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    No full text
    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell
    corecore