94 research outputs found
Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5
AbstractThe high costs of artificial pulmonary surfactants, ranging in hundreds per kilogram of body weight, used for treating the respiratory distress syndrome (RDS) premature babies have limited their applications. We have extensively studied soy lecithins and higher alcohols as lipid alternatives to expensive phospholipids such as DPPC and PG. As a substitute for the proteins, we have synthesized the peptide Hel 13-5D3 by introducing D-amino acids into a highly lipid-soluble, basic amphiphilic peptide, Hel 13-5, composed of 18 amino acid residues. Analysis of the surfactant activities of lipid-amphiphilic artificial peptide mixtures using lung-irrigated rat models revealed that a mixture (Murosurf SLPD3) of dehydrogenated soy lecithin, fractionated soy lecithin, palmitic acid (PA), and peptide Hel 13-5D3 (40:40:17.5:2.5, by weight) superior pulmonary surfactant activity than a commercially available pulmonary surfactant (beractant, Surfacten®). Experiments using ovalbumin-sensitized model animals revealed that the lipid-amphiphilic artificial peptide mixtures provided significant control over an increase in the pulmonary resistance induced by premature allergy reaction and reduced the number of acidocytes and neutrophils in lung-irrigated solution. The newly developed low-cost pulmonary surfactant system may be used for treatment of a wide variety of respiratory diseases
Successful Treatment of Staphylococcus schleiferi Infection after Aortic Arch Repair: In Situ Aortic Arch Replacement and Domino Reconstruction of the Debranching Graft using Autologous Iliac Artery
A 62-year-old Japanese male presented with graft infection by Staphylococcus schleiferi 50 days after debranching of the left subclavian artery and frozen elephant trunk repair for the entry closure of a Stanford type B aortic dissection. The graft was removed, and the patient was successfully treated using in situ reconstruction of the arch with omental flap coverage, removal of the debranching graft, autologous iliac artery grafting, and longterm antibiotics. Domino reconstruction of the infected debranching graft using autologous external iliac artery and a Dacron graft can thus be a good option in similar cases
Generation of mouse models for type 1 diabetes by selective depletion of pancreatic beta cells using toxin receptor-mediated cell knockout
AbstractBy using the toxin receptor-mediated cell knockout (TRECK) method, we have generated two transgenic (Tg) murine lines that model type 1 (insulin-dependent) diabetes. The first strain, C.B-17/Icr-Prkdcscid/Prkdcscid-INS-TRECK-Tg, carries the diphtheria toxin receptor (hDTR) driven by the human insulin gene promoter, while the other strain, C57BL/6-ins2(BAC)-TRECK-Tg, expresses hDTR cDNA under the control of the mouse insulin II gene promoter. With regard to the C.B-17/Icr-Prkdcscid/Prkdcscid-INS-TRECK-Tg strain, only one of three Tg strains exhibited proper expression of hDTR in pancreatic β cells. By contrast, hDTR was expressed in the pancreatic β cells of all four of the generated C57BL/6-ins2(BAC)-TRECK-Tg strains. Hyperglycemia, severe ablation of pancreatic β cells and depletion of serum insulin were observed within 3days after the administration of diphtheria toxin (DT) in these Tg mice. Subcutaneous injection of a suitable dosage of insulin was sufficient for recovery from hyperglycemia in all of the examined strains. Using the C.B-17/Icr-Prkdcscid/Prkdcscid-INS-TRECK-Tg model, we tried to perform regenerative therapeutic approaches: allogeneic transplantation of pancreatic islet cells from C57BL/6 and xenogeneic transplantation of CD34+ human umbilical cord blood cells. Both approaches successfully rescued C.B-17/Icr-Prkdcscid/Prkdcscid-INS-TRECK-Tg mice from hyperglycemia caused by DT administration. The high specificity with which DT causes depletion in pancreatic β cells of these Tg mice is highly useful for diabetogenic research
The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice
Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice
Recommended from our members
The circadian clock is disrupted in mice with adenine-induced tubulointerstitial nephropathy.
Chronic Kidney Disease (CKD) is increasing in incidence and has become a worldwide health problem. Sleep disorders are prevalent in patients with CKD raising the possibility that these patients have a disorganized circadian timing system. Here, we examined the effect of adenine-induced tubulointerstitial nephropathy on the circadian system in mice. Compared to controls, adenine-treated mice showed serum biochemistry evidence of CKD as well as increased kidney expression of inflammation and fibrosis markers. Mice with CKD exhibited fragmented sleep behavior and locomotor activity, with lower degrees of cage activity compared to mice without CKD. On a molecular level, mice with CKD exhibited low amplitude rhythms in their central circadian clock as measured by bioluminescence in slices of the suprachiasmatic nucleus of PERIOD 2::LUCIFERASE mice. Whole animal imaging indicated that adenine treated mice also exhibited dampened oscillations in intact kidney, liver, and submandibular gland. Consistently, dampened circadian oscillations were observed in several circadian clock genes and clock-controlled genes in the kidney of the mice with CKD. Finally, mice with a genetically disrupted circadian clock (Clock mutants) were treated with adenine and compared to wild type control mice. The treatment evoked worse kidney damage as indicated by higher deposition of gelatinases (matrix metalloproteinase-2 and 9) and adenine metabolites in the kidney. Adenine also caused non-dipping hypertension and lower heart rate. Thus, our data indicate that central and peripheral circadian clocks are disrupted in the adenine-treated mice, and suggest that the disruption of the circadian clock accelerates CKD progression
STRAD Project for Systematic Treatments of Radioactive Liquid Wastes Generated in Nuclear Facilities
A new collaborative research project for systematic treatments of radioactive liquid wastes containing various reagents generating in nuclear facilities was started from 2018 initiated by Japan Atomic Energy Agency. The project was named as STRAD (Systematic Treatments of RAdioactive liquid wastes for Decommissioning) project. Tentative targets to be studied under the project are aqueous and organic liquid wastes which have been generated by experiments and analyses in a reprocessing experimental laboratory of JAEA. Currently fundamental studies for treatments of the liquid wastes with complicated compositions are underway. In the STRAD project, process flow for treatment of ammonium ion involved in aqueous waste was designed though the inactive experiments, and decomposition of ammonium ion using catalysis will be carried out soon. Adsorbents for recovery of U and Pu from spent solvent were also developed. Demonstration experiments on genuine spent solvent is under planning
Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes
BACKGROUND: The rhizomes of Panax japonicus are used as a folk medicine for treatment of life-style related diseases such as arteriosclerosis, hyperlipidemia, hypertension and non-insulin-dependent diabetes mellitus as a substitute for ginseng roots in China and Japan. Obesity is closely associated with life-style-related diseases. This study was performed to clarify whether chikusetsusaponins prevent obesity induced in mice by a high-fat diet for 9 weeks. METHODS: We performed two in vivo experiments. In one, female ICR mice were fed a high-fat diet with or without 1 or 3% chikusetsusaponins isolated from P. japonicus rhizomes for 9 weeks. In the other, lipid emulsion with or without chikusetsusaponins was administered orally to male Wistar rats, and then the plasma triacylglycerol level was measured 0.5 to 5 h after the orally administered lipid emulsion. For in vitro experiments, the inhibitory effects of total chikusetsusaponins and various purified chikusetsusaponins on pancreatic lipase activity were determined by measuring the rate of release of oleic acid from triolein in an assay system using triolein emulsified with lecithin. RESULTS: Total chikusetsusaponins prevented the increases in body weight and parametrial adipose tissue weight induced by a high-fat diet. Furthermore, consumption of a high-fat diet containing 1 or 3% total chikusetsusaponins significantly increased the fecal content and triacylglycerol level at day 3 compared with the high-fat diet groups. Total chikusetsusaponins inhibited the elevation of the plasma triacylglycerol level 2 h after the oral administration of the lipid emulsion. Total chikusetsusaponins, chikusetsusaponin III, 28-deglucosyl-chikusetsusaponin IV and 28-deglucosyl-chikusetsusaponin V inhibited the pancreatic lipase activity. CONCLUSION: The anti-obesity effects of chikusetsusaponins isolated from P. japonicus rhizomes in mice fed a high-fat diet may be partly mediated through delaying the intestinal absorption of dietary fat by inhibiting pancreatic lipase activity. The present study clearly indicated that the saponin fractions of P. japonicus rhizomes had a significant anti-obesity action and supports the traditional usage as a substitute drug for ginseng roots
The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice
Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice
International Human Resources Management of Japanese, American, and European Firms in Asia : The Roles of Headquarters and Subsidiaries
The main role of the headquarters international human resources departments/business units of seven Japanese firms we researched is to manage the Japanese expatriates at their subsidiaries in Asia; they have little involvement with the management of local employees. The headquarters international human resources departments/business units at five researched American firms tend to maintain strong company value/mission that drives use of their performance appraisal/promotion systems for employees worldwide. In addition, the headquarters human resources departments/business units of the American firms tend to supervise senior-level managers regardless of their nationalities. Although two researched European firms manage senior-level managers worldwide, their international human resources management systems are not as rigid as those of American firms.
- …