53 research outputs found

    β-Hemolytic Streptococcus anginosus subsp. anginosus causes streptolysin S-dependent cytotoxicity to human cell culture lines in vitro

    Get PDF
    Background: Streptococcus anginosus subsp. anginosus (SAA) is one of the opportunistic pathogens in humans that inhabits the oral cavity. The type strain of SAA, NCTC10713T, showed clear β-hemolysis on blood agar plates, and the sole β-hemolytic factor revealed two streptolysin S (SLS) molecules. SLS is well known as the peptide hemolysin produced from the human pathogen S. pyogenes and shows not only hemolytic activity on erythrocytes but also cytotoxic activity in cell culture lines in vitro and in vivo, such as in a mouse infection model. However, no cytotoxic activity of SLS produced from β-hemolytic SAA (β-SAA) has been reported so far. Objective and Design: In this study, the SLS-dependent cytotoxicity of the β-SAA strains including the genetically modified strains was investigated in vitro. Results: The SLS-producing β-SAA showed cytotoxicity in human cell culture lines under the co-cultivation condition and it was found that this cytotoxicity was caused by the SLS secreted into the extracellular milieu. Conclusion: The results from this study suggest that the SLS produced from β-SAA might indicate the cytotoxic potential similar to that of the SLS from S. pyogenes and the SLS-producing β-SAA would be recognized as “a wolf in sheep’s clothing” More attention will be paid to the pathogenicity of β-hemolytic Anginosus group streptococci

    Isotope effects on energy, particle transport and turbulence in electron cyclotron resonant heating plasma of the Large Helical Device

    Get PDF
    Positive isotope effects have been found in electron cyclotron resonant heating plasma of the Large Helical Device (LHD). The global energy confinement time (τE) in deuterium (D) plasma is 16% better than in hydrogen (H) plasma for the same line-averaged density and absorption power. The power balance analyses showed a clear reduction in ion energy transport, while electron energy transport does not change dramatically. The global particle confinement time (τp) is degraded in D plasma; τp in D plasma is 20% worse than in H plasma for the same line-averaged density and absorption power. The difference in the density profile was not due to the neutral or impurity sources, but rather was due to the difference in the transport. Ion scale turbulence levels show isotope effects. The core turbulence (ρ  =  0.5–0.8) level is higher in D plasma than in H plasma in the low collisionality regime and is lower in D plasma than in H plasma. The density gradient and collisionality play a role in the core turbulence level

    Extended investigations of isotope effects on ECRH plasma in LHD

    Get PDF
    Isotope effects of ECRH plasma in LHD were investigated in detail. A clear difference of transport and turbulence characteristics in H and D plasmas was found in the core region, with normalized radius ρ < 0.8 in high collisionality regime. On the other hand, differences of transport and turbulence were relatively small in low collisionality regime. Power balance analysis and neoclassical calculation showed a reduction of the anomalous contribution to electron and ion transport in D plasma compared with H plasma in the high collisionality regime. In core region, density modulation experiments also showed more reduced particle diffusion in D plasma than in H plasma, in the high collisionality regime. Ion scale turbulence was clearly reduced at ρ < 0.8 in high collisionality regime in D plasma compared with H plasma. The gyrokinetic linear analyses showed that the dominant instability ρ = 0.5 and 0.8 were ion temperature gradient mode (ITG). The linear growth rate of ITG was reduced in D plasma than in H plasma in high collisionality regime. This is due to the lower normalized ITG and density gradient. More hollowed density profile in D plasma is likely to be the key control parameter. Present analyses suggest that anomalous process play a role to make hollower density profiles in D plasma rather than neoclassical process. Electron scale turbulence were also investigated from the measurements and linear gyrokinetic simulations

    Isotope effects on transport in LHD

    Get PDF
    Isotope effects are one of the most important issues for predicting future reactor operations. Large helical device (LHD) is the presently working largest stellarator/helical device using super conducting helical coils. In LHD, deuterium experiments started in 2017. Extensive studies regarding isotope effects on transport have been carried out. In this paper, the results of isotope effect studies in LHD are reported. The systematic studies were performed adjusting operational parameters and nondimensional parameters. In L mode like normal confinement plasma, where internal and edge transport barriers are not formed, the scaling of global energy confinement time (τE) with operational parameters shows positive mass dependence (M0.27; where M is effective ion mass) in electron cyclotron heating plasma and no mass dependence (M0.0) in neutral beam injection heating plasma. The non-negative ion mass dependence is anti-gyro-Bohm scaling. The role of the turbulence in isotope effects was also found by turbulence measurements and gyrokinetic simulation. Better accessibility to electron and ion internal transport barrier (ITB) plasma is found in deuterium (D) plasma than in hydrogen (H). Gyro kinetic non-linear simulation shows reduced ion heat flux due to the larger generation of zonal flow in deuterium plasma. Peaked carbon density profile plays a prominent role in reducing ion energy transport in ITB plasma. This is evident only in plasma with deuterium ions. New findings on the mixing and non-mixing states of D and H particle transports are reported. In the mixing state, ion particle diffusivities are higher than electron particle diffusivities and D and H ion density profiles are almost identical. In the non-mixing state, ion particle diffusivity is much lower than electron diffusivity. Deuterium and hydrogen ion profiles are clearly different. Different turbulence structures were found in the mixing and non-mixing states suggesting different turbulence modes play a role
    corecore