60 research outputs found

    Lipocortin I (Annexin I) Is Preferentially Localized on the Plasma Membrane in Keratinocytes of Psoriatic Lesional Epidermis as Shown by Immunofluorescence Microscopy

    Get PDF
    Lopocortin I (LPC-I, also called annexin I) is a 35-kD protein that binds phospholidpids and actin ina a Ca++-dependetn manner. It is also a major substrate for EGF recepto/kinase and rotein kinase C,. and a putative inhibito of phospholipase A2, which produces chemical mediators to cause inflammation. Psoriasos (PS) is an inflammatory skin disease characterized by a rapid turnover of keratinocytes and a defect in keratinization with increased activities of phospholipase C and A2, and EGF receptor. To understand the mechanism of the PS lesion formation and the function of LPC-I, its didtribution was studied in the epiedermis of PS, subacure eczema and normal skin, and in tumor, cells of seborheic keratosis and Bowen's disease. This study involved immunofluorescence and immunoblotting using affinity-purified polyclonal and monclonal antibodies specific to LPC-I and to its Ca++- bound form. In normal, nonlesional PS and subacute eczema epidermis, LPC-I was detected , mainly in the cytoplasm of the suprabasal cells, although it was on the inner aspects of the plasma membrane in some parts of the granular layer. In lesional epidermis of PS it was localized mainly on the inner aspects of the plasma membrane, but not in the cytoplasm of the whole suprabasal cells as the Ca++-bond form, indicating a preferential localization of the plasma membrane. This membrane-binding of LPC-I was also observed in seborrheic keratosis, but not in Bowen's disease. These results suggest that the binding of LPC-I to the plasma membrane occurs actually in living cells, plays a role not necessarily disease specific, in the PS lesion formation, and has some relevance to normal or abnormal differentiation of keratinocytes

    cDNA cloning and nucleotide sequence of rat muscle-specific enolase (ββ enolase)

    Get PDF
    AbstractThe nucleotide sequence of rat muscle-specific enolase cDNA was determined by sequencing three cDNA clones encoding this enolase isozyme. The nearly full-length cDNA consists of 13-bp 5′- and 84-bp 3′-noncoding regions and a poly(A) tail in addition to a 1302-bp coding region encoding a polypeptide composed of 434 amino acid residues. The deduced primary structure of this enolase isozyme is about 80% similar to those determined previously for rat neuron-specific and non-neuronal enolase isozymes. Southern blot analysis suggested strongly the existence of a single copy of the muscle-specific enolase gene per haploid genome. The mRNA for this enolase isozyme was detected in rat skeletal muscle on day 1 after birth and its level increased rapidly during 10–30 days after birth without any change in its size (1500 bases)

    Helicobacter cinaedi-associated Carotid Arteritis

    Get PDF
    A 65-year-old Japanese man with bilateral carotid atherosclerosis presented with right neck pain and fever. Contrast-enhanced computed tomography suggested carotid arteritis, and carotid ultrasonography showed an unstable plaque. The patient developed a cerebral embolism, causing a transient ischemic attack. Helicobacter cinaedi was detected in blood culture, and H. cinaedi-associated carotid arteritis was diagnosed. Empirical antibiotic therapy was administered for 6 weeks. After readmission for recurrent fever, he was treated another 8 weeks. Although the relationship between H. cinaedi infection and atherosclerosis development remains unclear, the atherosclerotic changes in our patient’s carotid artery might have been attributable to H. cinaedi infection

    Long-term ureteroscopic management of upper tract urothelial carcinoma: 28-year single-centre experience

    Get PDF
    Background Long-term survival outcomes of patients who undergo endoscopic management of non-invasive upper tract urothelial carcinoma remain uncertain. The longest mean follow-up period in previous studies was 6.1 years. This study reports the long-term outcomes of patients with upper tract urothelial carcinoma who underwent ureteroscopic ablation at a single institution over a 28-year period. Methods We identified all patients who underwent ureteroscopic management of upper tract urothelial carcinoma as their primary treatment at our institution between January 1991 and April 2011. Survival outcomes, including overall survival, cancer-specific survival, upper-tract recurrence-free survival and renal unit survival, were estimated using Kaplan−Meier methodology. Results A total of 15 patients underwent endoscopic management, with a mean age at diagnosis of 66 years. All patients underwent ureteroscopy, and biopsy-confirmed pathology was obtained. Median (range; mean) follow-up was 11.7 (2.3–20.9, 11.9) years. Upper tract recurrence occurred in 87% (n = 13) of patients. Twenty percent (n = 3) of patients proceeded to nephroureterectomy. The estimated cancer-specific survival rate was 93% at 5, 10, 15 and 20 years. Estimated overall survival rates were 86, 80, 54 and 20% at 5, 10, 15 and 20 years. Only one patient experienced cancer-specific mortality. The estimated mean and median overall survival times were 14.5 and 16.6 years, respectively. The estimated mean cancer-specific survival time was not reached. Conclusions Although upper tract recurrence is common, endoscopic management of non-invasive upper tract urothelial carcinoma provides a 90% cancer-specific survival rate at 20 years in selected patients

    Identification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription

    Get PDF
    It has been proposed that robust rhythmic gene expression requires clock-controlled elements (CCEs). Transcription of Per1 was reported to be regulated by the E-box and D-box in conventional reporter assays. However, such experiments are inconclusive in terms of how the CCEs and their combinations determine the phase of the Per1 gene. Whereas the phase of Per2 oscillation was found to be the most delayed among the three Period genes, the phase-delaying regions of the Per2 promoter remain to be determined. We therefore investigated the regulatory mechanism of circadian Per1 and Per2 transcription using an in vitro rhythm oscillation-monitoring system. We found that the copy number of the E-box might play an important role in determining the phase of Per1 oscillation. Based on real-time bioluminescence assays with various promoter constructs, we provide evidence that the non-canonical E-box is involved in the phase delay of Per2 oscillation. Transfection experiments confirmed that the non-canonical E-box could be activated by CLOCK/BMAL1. We also show that the D-box in the third conserved segment of the Per2 promoter generated high amplitude. Our experiments demonstrate that the copy number and various combinations of functional CCEs ultimately led to different circadian phases and amplitudes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore