10 research outputs found

    Detoxification of Aflatoxin B1 Contaminated Maize Using Human CYP3A4

    No full text

    Microarrays of Phospholipid Bilayers Generated by Inkjet Printing

    No full text
    We report an efficient and reproducible method to generate a microarray of model biological membranes on a solid substrate by applying the inkjet printing technology. Although inkjet printing is currently widely used for industrial fabrication processes, including biological materials, printing lipid membranes remains technically challenging due to the hydrophobic nature of droplets and instability of the lipid bilayer structure against dehydration. In the present study, we printed lipids onto a glass substrate covered with a micropatterned membrane of a polymeric phospholipid bilayer. Polymeric bilayers were formed by the lithographic photopolymerization of a diacetylene-containing phospholipid, 1,2-bis­(10,12-tricosadiynoyl)-<i>sn</i>-glycero-3-phosphocholine (DiynePC). After removal of nonpolymerized DiynePC with a detergent solution, natural lipid membranes were incorporated into the polymer-free regions (corrals) by using an electric-field-based inkjet printing device that can eject subfemtoliter volume droplets. To avoid rapid dehydration and destabilization, we preprinted an aqueous solution containing agarose and trehalose onto the corrals and subsequently printed lipid suspensions (“two-step-printing method”). After rinsing, stable lipid bilayer membranes were formed in the corrals. The bilayers were continuous and fluid as confirmed by fluorescence recovery after photobleaching. We could introduce multiple bilayer patches having different lipid compositions into the neighboring corrals. The present results demonstrate that the combination of a patterned polymeric bilayer and inkjet printing technology enables efficient, reliable, and scalable generation of the model membrane microarrays having varied compositions

    Photoregulation of Cytochrome P450 Activity by Using Caged Compound

    No full text
    Cytochrome P450 (P450) species play an important role in the metabolism of xenobiotics, and assaying the activities of P450 is important for evaluating the toxicity of chemicals in drugs and food. However, the lag time caused by the introduction and mixing of sample solutions can become sources of error as the throughput is heightened by increasing the sample number and decreasing the sample volume. To amend this technological obstacle, we developed a methodology to photoregulate the activity of P450 by using photoprotected (caged) compounds. We synthesized caged molecules of nicotinamide adenine dinucleotide phosphate (NADP<sup>+</sup>) and glucose 6-phosphate (G6P), which are involved in the generation of NADPH (cofactor of P450). The use of caged-G6P completely blocked the P450 catalysis before the UV illumination, whereas caged-NADP<sup>+</sup> resulted in a little background reaction. Upon UV illumination, more than 90% of the enzymatic activity could be restored. The use of caged-G6P enabled assays in isolated microchambers (width, 50 ÎĽm; height, 50 ÎĽm) by encapsulating necessary ingredients in advance and initiating the reaction by UV illumination. The initiation of enzymatic reaction could be observed in a single microchamber. Minimizing uncertainties caused by the introduction and mixing of solutions led to significantly reduced errors of obtained kinetic constants

    Surface Functionalization of a Polymeric Lipid Bilayer for Coupling a Model Biological Membrane with Molecules, Cells, and Microstructures

    No full text
    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis­(10,12-tricosadiynoyl)-<i>sn</i>-glycero-3-phosphocholine (DiynePC) and 1,2-bis­(10,12-tricosadiynoyl)-<i>sn</i>-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay

    Microarray of Human P450 with an Integrated Oxygen Sensing Film for High-Throughput Detection of Metabolic Activities

    No full text
    A microarray chip containing human P450 isoforms was constructed for the parallel assay of their metabolic activities. The chip had microwells that contained vertically integrated P450 and oxygen sensing layers. The oxygen sensing film was made of an organically modified silica film (ORMOSIL) doped with tris­(4,7-diphenyl-1,10-phenanthroline) ruthenium dichloride (Ru­(dpp)<sub>3</sub>Cl<sub>2</sub>). Human P450s (23 types) expressed in <i>E. coli</i> and purified as membrane fractions were immobilized in agarose matrixes on the oxygen sensing layer. The activities of P450s were determined by evaluating the fluorescence intensity enhancement of the oxygen sensor due to the oxygen consumption by the metabolic reaction. By normalizing the responses with the amounts of oxygen sensor and P450 enzymes in microwells, we could obtain fluorescence enhancement patterns that were characteristic to the combination of P450 isoforms and substrate material. The patterns obtained from two psoralen derivatives resembled each other, whereas a structurally different substrate (capsaicin) resulted in a distinct pattern. These results suggest the potential of the microarray to analyze the activities of diverse P450 isoforms in a high-throughput fashion. Furthermore, mechanism-based inactivation (MBI) of P450 could be detected by successively incubating a chip with different substrate solutions and measuring the residual activities
    corecore