56 research outputs found

    Effect of electrical activity of the diaphragm waveform patterns on SpO₂ for extremely preterm infants ventilated with neurally adjusted ventilatory assist

    Get PDF
    [Objective] This study aimed to evaluate the association between electrical activity of the diaphragm (Edi) waveform patterns and peripheral oxygen saturation (SpO2) in extremely preterm infants who are ventilated with neurally adjusted ventilatory assist (NAVA). [Study Design] We conducted a retrospective cohort study at a level III neonatal intensive care unit. Extremely preterm infants born at our hospital between November 2019 and November 2020 and ventilated with NAVA were included. We collected Edi waveform data and classified them into four Edi waveform patterns, including the phasic pattern, central apnea pattern, irregular low-voltage pattern, and tonic burst pattern. We analyzed the Edi waveform pattern for the first 15 h of collectable data in each patient. To investigate the association between Edi waveform patterns and SpO2, we analyzed the dataset every 5 min as one data unit. We compared the proportion of each waveform pattern between the desaturation (Desat [+]) and non-desaturation (Desat [–]) groups. [Results] We analyzed collected data for 105 h (1260 data units). The proportion of the phasic pattern in the Desat (+) group was significantly lower than that in the Desat (–) group (p < .001). However, the proportions of the central apnea, irregular low-voltage, and tonic burst patterns in the Desat (+) group were significantly higher than those in the Desat (–) group (all p < .05). [Conclusion] Our results indicate that proportions of Edi waveform patterns have an effect on desaturation of SpO2 in extremely preterm infants who are ventilated with NAVA

    Effect of doxapram on the electrical activity of the diaphragm waveform pattern of preterm infants

    Get PDF
    [Objective] This study aimed to evaluate the change in the waveform pattern of the electrical activity of the diaphragm (Edi) following the administration of doxapram in extremely preterm infants ventilated with neurally adjusted ventilatory assist (NAVA). [Study Design] We conducted this retrospective cohort study in our neonatal intensive care unit between November 2019 and September 2021. The study participants were extremely preterm infants under the gestational age of 28 weeks who were ventilated with NAVA and administered doxapram. We collected the data of the Edi waveform pattern and calculated the proportion. To analyze the change in the proportion of the Edi waveform pattern, we compared the proportion of the data for 1 h before and after doxapram administration. [Results] Ten extremely preterm infants were included. Almost all the patients’ respiratory condition improved after doxapram administration. The ventilatory parameters—Edi peak, Edi minimum, peak inspiratory pressure, time in backup ventilation, and number of switches to backup ventilation—did not change significantly. However, the proportion of phasic pattern significantly increased (before: 46% vs. after: 72%; p < 0.05), whereas the central apnea pattern significantly decreased after doxapram administration (before: 31% vs. after: 8.3%; p < 0.05). The proportion of irregular low-voltage patterns tended to decrease, albeit with no significant changes. [Conclusion] Our results indicated that the proportion of Edi waveform patterns changed following doxapram administration. Edi waveform pattern analysis could be a sensitive indicator of effect with other intervention for respiratory conditions

    Identification of the ultrahigh-risk subgroup in neuroblastoma cases through DNA methylation analysis and its treatment exploiting cancer metabolism

    Get PDF
    神経芽腫の新たな診断法と治療戦略を創出 --がん細胞の生存戦略「がん代謝」を逆用する--. 京都大学プレスリリース. 2022-11-02.Neuroblastomas require novel therapies that are based on the exploitation of their biological mechanism. To address this need, we analyzed the DNA methylation and expression datasets of neuroblastomas, extracted a candidate gene characterizing the aggressive features, and conducted functional studies. Based on the DNA methylation data, we identified a subgroup of neuroblastoma cases with 11q loss of heterozygosity with extremely poor prognosis. PHGDH, a serine metabolism-related gene, was extracted as a candidate with strong expression and characteristic methylation in this subgroup as well as in cases with MYCN amplification. PHGDH inhibition suppressed neuroblastoma cell proliferation in vitro and in vivo, indicating that the inhibition of serine metabolism by PHGDH inhibitors is a therapeutic alternative for neuroblastoma. Inhibiting the arginine metabolism, which is closely related to serine metabolism using arginine deiminase, had a combination effect both in vitro and in vivo, especially on extracellular arginine-dependent neuroblastoma cells with ASS1 deficiency. Expression and metabolome analyses of post-dose cells confirmed the synergistic effects of treatments targeting serine and arginine indicated that xCT inhibitors that inhibit cystine uptake could be candidates for further combinatorial treatment. Our results highlight the rational therapeutic strategy of targeting serine/arginine metabolism for intractable neuroblastoma

    Alteration of the immune environment in bone marrow from children with recurrent B cell precursor acute lymphoblastic leukemia

    Get PDF
    Due to the considerable success of cancer immunotherapy for leukemia, the tumor immune environment has become a focus of intense research; however, there are few reports on the dynamics of the tumor immune environment in leukemia. Here, we analyzed the tumor immune environment in pediatric B cell precursor acute lymphoblastic leukemia by analyzing serial bone marrow samples from nine patients with primary and recurrent disease by mass cytometry using 39 immunophenotype markers, and transcriptome analysis. High-dimensional single-cell mass cytometry analysis elucidated a dynamic shift of T cells from naïve to effector subsets, and clarified that, during relapse, the tumor immune environment comprised a T helper 1-polarized immune profile, together with an increased number of effector regulatory T cells. These results were confirmed in a validation cohort using conventional flow cytometry. Furthermore, RNA transcriptome analysis identified the upregulation of immune-related pathways in B cell precursor acute lymphoblastic leukemia cells during relapse, suggesting interaction with the surrounding environment. In conclusion, a tumor immune environment characterized by a T helper 1-polarized immune profile, with an increased number of effector regulatory T cells, could contribute to the pathophysiology of recurrent B cell precursor acute lymphoblastic leukemia. This information could contribute to the development of effective immunotherapeutic approaches against B cell precursor acute lymphoblastic leukemia relapse

    Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma.

    Get PDF
    横紋筋肉腫におけるゲノム・エピゲノム異常の全体図を解明 -横紋筋肉腫を4群に分類-. 京都大学プレスリリース. 2015-07-03.Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes

    Get PDF
    Carbon nanotubes (CNTs) have attractive biochemical properties such as strong cell adhesion and protein absorption, which are very useful for a cell cultivation scaffold. In this study, we prepared a multiwalled carbon nanotube-coated collagen sponge (MWCNT-coated sponge) to improve the surface properties of the collagen sponge, and its cell culturing properties were examined. The suface of the collagen sponge was homogeneously coated with MWCNTs by dispersion. MC3T3-E1 cells were cultured on and inside the MWCNT-coated sponge. The DNA content on the MWCNT-coated sponge after 1 week of culture was significantly higher than on an uncoated collagen sponge (p<0.05). There was no significant difference between the estimated ALP activity normalized by DNA quantity on the MWCNT-coated sponge and that on the uncoated collagen sponge which is well known as one of the best scaffolds for cell cultivation. In addition, the MWCNT-coated surface shows strong cell adhesion. Therefore, the MWCNT-coated collagen sponge is expected to be a useful 3D scaffold for cell cultivation
    corecore