79 research outputs found

    Protective effect of tin chloride on rhabdomyolysis-induced acute kidney injury in rats

    Get PDF
    The heme component of myoglobin plays a crucial role in the pathogenesis of rhabdomyolysis-associated acute kidney injury (RM-AKI). Heme oxiganenase-1 (HO-1) is the rate-limiting enzyme of heme catabolism, and its metabolites, iron, biliverdin, and carbon monoxide, have antioxidant properties. Tin chloride (SnCl2) is a kidney specific HO-1 inducer. In this study, we examined whether the induction of HO-1 in the kidney by SnCl2 pretreatment ameliorates RM-AKI in rats and if the effect is due to the degradation of excess renal free heme. We developed an RM-AKI rat (male Sprague-Dawley rats) model by injecting glycerol (Gly) in the hind limbs. RM-AKI rats were pretreated with saline or SnCl2 or additional SnMP (tin mesoporphyrin, a specific HO inhibitor) followed by Gly treatment. Serum blood urea nitrogen (BUN) and creatinine (Crea) were measured as indicators of renal function. Renal free heme level was assessed based on the levels of delta-aminolevulinate synthase (ALAS1), a heme biosynthetic enzyme, and nuclear BTB and CNC homology 1 (Bach1), an inhibitory transcription factor of HO-1. Elevated free heme levels lead to decreases in ALAS1 and nuclear Bach1. After 24 h of Gly injection, serum BUN and Crea levels in saline-pretreated rats were significantly higher than those in untreated control rats. In contrast, SnCl2-pretreated rats showed no significant increase in the indices. However, additional treatment of SnMP abolished the beneficial effect of SnCl2. Renal ALAS1 mRNA levels and renal nuclear Bach1 protein levels in the saline pretreated rats were significantly lower than those in control rats 3 h after Gly injection. In contrast, the levels in SnCl2-pretreated rats were not altered. The findings indicate that SnCl2 pretreatment confers protection against RM-AKI by virtue of HO-1 induction in the renal system, at least in part through excess free heme degradation

    Role of the Transcription Factor BTB and CNC Homology 1 in a Rat Model of Acute Liver Injury Induced by Experimental Endotoxemia

    Get PDF
    Hepatic oxidative stress plays an important role in the pathogenesis of several acute liver diseases, and free heme is thought to contribute to endotoxemia-induced acute liver injury. The heme oxygenase 1 (HO-1) gene is upregulated and the δ-aminolevulinate synthase (ALAS1) gene is downregulated in the rat liver following lipopolysaccharide (LPS) treatment. BTB and CNC homology 1 (Bach1) is a heme-responsive transcription factor that normally represses HO-1 expression. In this study, we evaluated the changes in HO-1, ALAS1, and Bach1 expression and nuclear Bach1 expression in rat livers following intravenous LPS administration (10 mg/kg body weight). LPS significantly upregulated HO-1 mRNA and downregulated ALAS1 mRNA in the rat livers, suggesting that hepatic free heme concentrations are increased after LPS treatment. Bach1 mRNA was strongly induced after LPS injection. In contrast, nuclear Bach1 was significantly but transiently decreased after LPS treatment. Rats were also administered hemin (50 mg/kg body weight) intravenously to elevate heme concentrations, which decreased nuclear Bach1 levels. Our results suggest that elevated hepatic free heme may be associated with a decline of nuclear Bach1, and induction of Bach1 mRNA may compensate for the decreased nuclear Bach1 after LPS treatment in the rat liver

    Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection.

    Get PDF
    Bornaviruses are nonsegmented negative-strand RNA viruses that establish a persistent infection in the nucleus and occasionally integrate a DNA genome copy into the host chromosomal DNA. However, how these viruses achieve intranuclear infection remains unclear. We show that Borna disease virus (BDV), a mammalian bornavirus, closely associates with the cellular chromosome to ensure intranuclear infection. BDV generates viral factories within the nucleus using host chromatin as a scaffold. In addition, the viral ribonucleoprotein (RNP) interacts directly with the host chromosome throughout the cell cycle, using core histones as a docking platform. HMGB1, a host chromatin-remodeling DNA architectural protein, is required to stabilize RNP on chromosomes and for efficient BDV RNA transcription in the nucleus. During metaphase, the association of RNP with mitotic chromosomes allows the viral RNA to segregate into daughter cells and ensure persistent infection. Thus, bornaviruses likely evolved a chromosome-dependent life cycle to achieve stable intranuclear infection

    Effects of Biliverdin Administration on Acute Lung Injury Induced by Hemorrhagic Shock and Resuscitation in Rats

    Get PDF
    Hemorrhagic shock and resuscitation induces pulmonary inflammation that leads to acute lung injury. Biliverdin, a metabolite of heme catabolism, has been shown to have potent cytoprotective, anti-inflammatory, and anti-oxidant effects. This study aimed to examine the effects of intravenous biliverdin administration on lung injury induced by hemorrhagic shock and resuscitation in rats. Biliverdin or vehicle was administered to the rats 1 h before sham or hemorrhagic shock-inducing surgery. The sham-operated rats underwent all surgical procedures except bleeding. To induce hemorrhagic shock, rats were bled to achieve a mean arterial pressure of 30 mmHg that was maintained for 60 min, followed by resuscitation with shed blood. Histopathological changes in the lungs were evaluated by histopathological scoring analysis. Inflammatory gene expression was determined by Northern blot analysis, and oxidative DNA damage was assessed by measuring 8-hydroxy-2' deoxyguanosine levels in the lungs. Hemorrhagic shock and resuscitation resulted in prominent histopathological damage, including congestion, edema, cellular infiltration, and hemorrhage. Biliverdin administration prior to hemorrhagic shock and resuscitation significantly ameliorated these lung injuries as judged by histopathological improvement. After hemorrhagic shock and resuscitation, inflammatory gene expression of tumor necrosis factor-alpha and inducible nitric oxide synthase were increased by 18- and 8-fold, respectively. Inflammatory gene expression significantly decreased when biliverdin was administered prior to hemorrhagic shock and resuscitation. Moreover, after hemorrhagic shock and resuscitation, lung 8-hydroxy-2' deoxyguanosine levels in mitochondrial DNA expressed in the pulmonary interstitium increased by 1.5-fold. Biliverdin administration prior to hemorrhagic shock and resuscitation decreased mitochondrial 8-hydroxy-2' deoxyguanosine levels to almost the same level as that in the control animals. We also confirmed that biliverdin administration after hemorrhagic shock and resuscitation had protective effects on lung injury. Our findings suggest that biliverdin has a protective role, at least in part, against hemorrhagic shock and resuscitation-induced lung injury through anti-inflammatory and anti-oxidant mechanisms

    Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1

    No full text
    The mechanism of inward rectification was investigated by recording single-channel currents through an inwardly rectifying K+ channel (Kir2.1). cDNA encoding a wild-type (WT) channel, a mutant replacing Asp 172 with Asn (D172N), and a tandem tetramer WT-(D172N)2-WT, was transfected into COS-1 cells using the liposome method, and after 48–72 h single-channel currents were recorded in the inside-out configuration at 150 mm internal and external K+. Steady-state open probability of outward currents decreased with larger depolarizations. The activation curve was fitted with a single Boltzmann equation. The voltages of half-activation in the absence of spermine were +35.9 mV (WT), +55.0 mV (WT-(D172N)2-WT) and +76.7 mV (D172N). Open-time and zero-current-time histograms were constructed. The open-time histogram was fitted with a single exponential function. Two exponential functions were necessary to fit the closed-time histogram. In each channel, internal spermine at a concentration of 1–100 nm reduced the open time of the outward currents in a concentration-dependent manner and produced one blocked state without affecting the inward currents, suggesting that spermine acts as an open channel blocker. The normalized steady-state open probability-spermine concentration curve was fitted by saturation kinetics with a Hill coefficient of 1. On the assumption of the linear sequential state model, the unblock and blocking rates were estimated in each channel. Unblock rates depended on the number of D172N mutant subunits, but blocking rates did not. The results suggest that closing gates work independently of the spermine block and D172 is involved in both intrinsic gating and the spermine block
    corecore