1,750 research outputs found

    Critical phenomena in globally coupled excitable elements

    Full text link
    Critical phenomena in globally coupled excitable elements are studied by focusing on a saddle-node bifurcation at the collective level. Critical exponents that characterize divergent fluctuations of interspike intervals near the bifurcation are calculated theoretically. The calculated values appear to be in good agreement with those determined by numerical experiments. The relevance of our results to jamming transitions is also mentioned.Comment: 4 pages, 3 figure

    Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows

    Full text link
    We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, the elastic effect becomes suddenly comparable and the first transition sets in. Through the transition, a separation vortex disappears and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; The viscous drag significantly drops and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic effect dominates the convective effect, the second transition occurs but it is relatively moderate. The second one seems to be governed by so-called Weissenberg effect. These transitions are not sensitive to driving forces. By the scaling analysis, it is shown that the stress component is proportional to the Reynolds number on the boundary of the first transition in the Re-Wi space. This scaling coincides well with the numerical result.Comment: 33pages, 23figures, submitted to Physical Review

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres

    Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    Full text link
    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.Comment: 14 pages, 4 figure

    Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct Catenin Subfamilies Promote Wnt Signals

    Get PDF
    Summaryp120-catenin is an Arm repeat protein that interacts with varied components such as cadherin, small G proteins, kinases, and the Kaiso transcriptional repressor. Despite recent advances in understanding the roles that p120-catenin and Kaiso play in downstream modulation of Wnt/β-catenin signaling, the identity of the upstream regulators of the p120-catenin/Kaiso pathway have remained unclear. Here, we find that p120-catenin binds Frodo, which itself interacts with the Wnt pathway protein Dishevelled (Dsh). In Xenopus laevis, we demonstrate that Wnt signals result in Frodo-mediated stabilization of p120-catenin, which, in turn, promotes Kaiso sequestration or removal from the nucleus. Our results point to Dsh and Frodo as upstream regulators of the p120-catenin/Kaiso signaling pathway. Importantly, this suggests that Wnt signals acting through Dsh regulate the stability of p120-catenin in addition to that of β-catenin, and that each catenin promotes its respective signal in parallel to regulate distinct, as well as shared, direct downstream gene targets

    Local density of states around a magnetic impurity in high-Tc superconductors based on the t-J model

    Full text link
    The local density of states (LDOS) around a magnetic impurity in high-Tc superconductors is studied using the two-dimensional t-J model with a realistic band structure. The order parameters are determined in a self-consistent way within the Gutzwiller approximation and the Bogoliubov-de Gennes theory. In sharp contrast with the nonmagnetic impurity case, the LDOS near the magnetic impurity shows two resonance peaks reflecting the presence of spin-dependent resonance states. It is also shown that these resonance states are approximately localized around the impurity. The present results have an large implication on the scanning tunneling spectroscopy observation of Bi_{2}Sr_{2}Ca(Cu_{1-x}Ni[Zn]_{x})_{2}O_{8+delta}.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
    corecore