19 research outputs found

    Enhanced Merge Sort- A New Approach to the Merging Process

    Get PDF
    AbstractOne of the major fundamental issues of Computer Science is arrangement of elements in the database. The efficiency of the sorting algorithms is to optimize the importance of other sorting algorithms11. The optimality of these sorting algorithms is judged while calculating their time and space complexities12. The idea behind this paper is to modify the conventional Merge Sort Algorithm and to present a new method with reduced execution time. The newly proposed algorithm is faster than the conventional Merge Sort algorithm having a time complexity of O(n log2 n). The proposed algorithm has been tested, implemented, compared and the experimental results are promising

    Quantitative Evaluation of Display Contrast of Gd-EOB-DTPA-Enhanced Magnetic Resonance Images: Effects of the Flip Angle and Grayscale Gamma Value

    No full text
    Introduction. Display contrast can be changed nonlinearly by manipulating the gamma value of the grayscale. We investigated the contrast of the hepatobiliary-phase images acquired with different flip angles (FAs) and displayed with different gamma values in Gd-EOB-DTPA-enhanced magnetic resonance imaging. Material and Methods. Twenty patients with liver tumors were studied. Hepatobiliary-phase images were acquired at low (12°) and high (30°) FAs. Low-FA images were converted to simulate images displayed with different gamma values, using ImageJ software. To assess image contrast, the liver-to-muscle signal ratio (LMR), liver-to-spleen signal ratio (LSR), contrast ratio (CR), liver signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated. Results. The LMR, LSR, and CR were higher in the high-FA images than in the low-FA original images. Although the SNR was lower in the high-FA images, indicating an increase in noise, the CNR was higher. Raising the gamma value increased the LMR, LSR, and CR, notably decreased the SNR, and slightly decreased the CNR. Conclusion. Increasing the FA enhanced image contrast, supporting its usefulness for improving the delineation of focal liver lesions. Although the associated increase in noise may be problematic, raising the grayscale gamma value enhances the display contrast of low-FA images

    A prediction model for the grade of liver fibrosis using magnetic resonance elastography

    No full text
    Abstract Background Liver stiffness measurement (LSM) has recently become available for assessment of liver fibrosis. We aimed to develop a prediction model for liver fibrosis using clinical variables, including LSM. Methods We performed a prospective study to compare liver fibrosis grade with fibrosis score. LSM was measured using magnetic resonance elastography in 184 patients that underwent liver resection, and liver fibrosis grade was diagnosed histologically after surgery. Using the prediction model established in the training group, we validated the classification accuracy in the independent test group. Results First, we determined a cut-off value for stratifying fibrosis grade using LSM in 122 patients in the training group, and correctly diagnosed fibrosis grades of 62 patients in the test group with a total accuracy of 69.3%. Next, on least absolute shrinkage and selection operator analysis in the training group, LSM (r = 0.687, P < 0.001), indocyanine green clearance rate at 15 min (ICGR15) (r = 0.527, P < 0.001), platelet count (r = –0.537, P < 0.001) were selected as variables for the liver fibrosis prediction model. This prediction model applied to the test group correctly diagnosed 32 of 36 (88.8%) Grade I (F0 and F1) patients, 13 of 18 (72.2%) Grade II (F2 and F3) patients, and 7 of 8 (87.5%) Grade III (F4) patients in the test group, with a total accuracy of 83.8%. Conclusions The prediction model based on LSM, ICGR15, and platelet count can accurately and reproducibly predict liver fibrosis grade

    Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding.

    No full text
    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme

    Additional file 1: Figure S1. of A prediction model for the grade of liver fibrosis using magnetic resonance elastography

    No full text
    ROC analysis for fibrosis score in relation to fibrosis grade. (a) Fibrosis grade I vs II/III. The AUC of the ROC was 0.930. (b) Fibrosis grade I/II vs III. The AUC of the ROC was 0.925. (PPTX 64 kb

    Comparison of ET30 and ET60 images.

    No full text
    <p>The FA values for ET60 were significantly higher than those for ET30 in most of the white matter, with slight left hemisphere predominance. These data were overlaid onto the MNI152_T1 template, and the mean FA skeleton is shown in green. The significance level was set at a <i>P</i> value of <0.05 with FWE correction.</p
    corecore