19 research outputs found

    BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin

    Get PDF
    Because mouse embryonic stem cells (mESCs) do not contribute to the formation of extraembryonic placenta when they are injected into blastocysts, it is believed that mESCs do not differentiate into trophoblast whereas human embryonic stem cells (hESCs) can express trophoblast markers when exposed to bone morphogenetic protein 4 (BMP4) in vitro. To test whether mESCs have the potential to differentiate into trophoblast, we assessed the effect of BMP4 on mESCs in a defined monolayer culture condition. The expression of trophoblast-specific transcription factors such as Cdx2, Dlx3, Esx1, Gata3, Hand1, Mash2, and Plx1 was specifically upregulated in the BMP4-treated differentiated cells, and these cells expressed trophoblast markers. These results suggest that BMP4 treatment in defined culture conditions enabled mESCs to differentiate into trophoblast. This differentiation was inhibited by serum or leukemia inhibitory factor, which are generally used for mESC culture. In addition, we studied the mechanism underlying BMP4-directed mESC differentiation into trophoblast. Our results showed that BMP4 activates the Smad pathway in mESCs inducing Cdx2 expression, which plays a crucial role in trophoblast differentiation, through the binding of Smad protein to the Cdx2 genomic enhancer sequence. Our findings imply that there is a common molecular mechanism underlying hESC and mESC differentiation into trophoblast

    Study on Strategies to Implement Adaptation Measures for Extreme High Temperatures into the Street Canyon

    No full text
    The purpose of this study is to evaluate the potential for using the spaces integrating the roads and sidewalks in the street canyon as human-centered spaces, and to investigate more appropriate measures to improve the thermal environment for pedestrians and visitors in these spaces. Based on the spatial distribution of SET* throughout the day, as possible human-centered street space uses, north–south streets with restricted widths and south sidewalks on east–west streets are candidates. Spatiotemporal distributions of SET* were calculated when water was sprinkled on the road surface in the street canyon and when water surface, sunshade, and trees were introduced in the street canyon. Assuming people walk or stay on the water surface, the MRT decreases, causing SET* to be below 31.5 °C at any time, so if a continuous supply of water is guaranteed and people can approach the water surface, the water surface can be expected to have a significant impact anywhere at any time. On the east–west street, shading by sunshades and trees occurs along the lanes at any time, allowing pedestrians moving through the lanes to pass through the shaded areas on a periodic cycle. On north–south street, the time required for the countermeasures is limited to around noon, so the measure is effective even if the shade does not occur in the target lanes only around noon

    Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads

    No full text
    Abstract High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30–50%, and detect more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads
    corecore