62 research outputs found

    Parametric resonance enhancement in neutron interferometry and application for the search for non-Newtonian gravity

    Get PDF
    The parametric resonance enhancement of the phase of neutrons due to non-Newtonian anomalous gravitationis considered. The existence of such resonances is confirmed by numerical calculations. A possible experimentalscheme for observing this effect is discussed based on an existing neutron interferometer design

    Measurement of the total neutron scattering cross section ratios of noble gases of natural isotopic composition using a pulsed neutron beam

    Full text link
    Precision measurements of slow neutron cross sections with atoms have several scientific applications. In particular the n-4^{4}He s-wave scattering length is important to know both for helping to constrain the nuclear three-body interaction and for the proper interpretation of several ongoing slow neutron experiments searching for other types of neutron-atom interactions. We present new measurements of the ratios of the neutron differential scattering cross sections for natural isotopic-abundance mixtures of the noble gases He, Ar, Kr, and Xe to natural isotopic abundance Ne. These measurements were performed using a recently developed neutron scattering apparatus for gas samples located on a pulsed slow neutron beamline which was designed to search for possible exotic neutron-atom interactions and employs both neutron time of flight information and a position-sensitive neutron detector for scattering event reconstruction. We found agreement with the literature values of scattering cross sections inferred from Ar/Ne, Kr/Ne and Xe/Ne differential cross section ratios over the qq range of 171 - 7 nm1^{-1}. However for the case of He/Ne we find that the cross section inferred differs by 11.3% (7.6 σ\sigma) from previously-reported values inferred from neutron phase shift measurements, but is in reasonable agreement with values from other measurements. The very large discrepancy in the He/Ne ratio calls for a new precision measurement of the n-4^{4}He scattering length using neutron interferometry

    Parity Violation in Neutron Resonances in 107,109Ag

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Parity Violation in Neutron Resonances in 115In

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in indium by measuring the helicity dependence of the neutron total cross section in the neutron energy range 6.0–316 eV with the time-of-flight method at LANSCE. A total of 36 p-wave neutron resonances were studied in 115In, and statistically significant asymmetries were observed for nine cases. An analysis treating the PNC matrix elements as random variables yields a weak matrix element of M=(0.67-0.12+0.16) meV and a weak spreading width of Γw=(1.30-0.43+0.76)×10-7 eV
    corecore