5 research outputs found

    Abscisic acid switches cell division modes of asymmetric cell division and symmetric cell division in stem cells of protonemal filaments in the moss Physcomitrium patens

    Get PDF
    Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stein cells that are induced by environmental signals in P. patens

    Golgi-localized membrane protein AtTMN1/EMP12 functions in the deposition of rhamnogalacturonan II and I for cell growth in Arabidopsis

    No full text
    Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root and stem elongation, and fertility under low B, but reduced primary root lengths under sufficient B conditions. Altered primary root elongation was associated with cell elongation changes caused by loss of function in AtTMN1 (Transmembrane Nine 1)/EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, AtTMN1 mutations reduced concentrations of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-1), suggesting reduced RG-II and RG-1. Together, our findings demonstrate that AtTMN1 is required for the deposition of RG-II and RG-1 for cell growth and suggest that pectin modulates plant growth under low B conditions
    corecore