21 research outputs found

    Salicylate Inhibits Thrombopoiesis in Rat Megakaryocytes by Changing the Membrane Micro-Architecture

    No full text
    Background/Aims: Salicylate causes drug-induced immune thrombocytopenia. However, some clinical studies indicate the presence of additional mechanisms in the drug-induced thrombocytopenia, by which the platelet production from megakaryocytes may directly be affected. Since salicylate is amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membrane, it can induce some structural changes in the megakaryocyte membrane surface and thus affect the process of thrombopoiesis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate on the membrane capacitance in rat megakaryocytes. Taking electron microscopic imaging of the cellular surface, we also examined the effects of salicylate on the membrane micro-architecture of megakaryocytes. Results: Salicylate significantly decreased the membrane capacitance of megakaryocytes, indicating the decreased number of invaginated plasma membranes, which was not detected by the fluorescent imaging technique. As shown by electron microscopy, salicylate actually halted the process of pro-platelet formation in megakaryocytes. Conclusion: This study demonstrated for the first time that salicylate inhibits the process of thrombopoiesis in megakaryocytes, as detected by the decrease in the membrane capacitance. Salicylate-induced changes in the membrane micro-architecture are thought to be responsible for its effects

    Anti-Allergic Drugs Tranilast and Ketotifen Dose-Dependently Exert Mast Cell-Stabilizing Properties

    No full text
    Background: Anti-allergic drugs, such as tranilast and ketotifen, inhibit the release of chemokines from mast cells. However, we know little about their direct effects on the exocytotic process of mast cells. Since exocytosis in mast cells can be monitored electrophysiologically by changes in the whole-cell membrane capacitance (Cm), the absence of such changes by these drugs indicates their mast cell-stabilizing properties. Methods: Employing the standard patch-clamp whole-cell recording technique in rat peritoneal mast cells, we examined the effects of tranilast and ketotifen on the Cm during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Relatively lower concentrations of tranilast (100, 250 µM) and ketotifen (1, 10 µM) did not significantly affect the GTP-γ-S-induced increase in the Cm. However, higher concentrations of tranilast (500 µM, 1 mM) and ketotifen (50, 100 µM) almost totally suppressed the increase in the Cm, and washed out the trapping of the dye on the surface of the mast cells. Compared to tranilast, ketotifen required much lower doses to similarly inhibit the degranulation of mast cells or the increase in the Cm. Conclusions: This study provides electrophysiological evidence for the first time that tranilast and ketotifen dose-dependently inhibit the process of exocytosis, and that ketotifen is more potent than tranilast in stabilizing mast cells. The mast cell-stabilizing properties of these drugs may be attributed to their ability to counteract the plasma membrane deformation in degranulating mast cells
    corecore