9 research outputs found

    The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers

    Get PDF
    AbstractSUPERMAN was identified as a putative regulator of transcription that acts in floral development, but its function remains to be clarified. We demonstrate here that SUPERMAN is an active repressor whose repression domain is located in the carboxy-terminal region. Ectopic expression of SUPERMAN that lacked the repression domain resulted in a phenotype similar to that of superman mutants, demonstrating that the repression activity of SUPERMAN is essential for the development of normal flowers. Constitutive expression of SUPERMAN resulted in a severe dwarfism but did not affect cell size, indicating that SUPERMAN might regulate genes that are involved in cell division

    The NAC Transcription Factor Gene OsY37 (ONAC011) Promotes Leaf Senescence and Accelerates Heading Time in Rice

    No full text
    Leaf senescence is an important physiological process involving the degradation of a number of metabolites and their remobilization to new reproductive and storage organs. NAC (NAM, ATAF, and CUC) transcription factors are reported as important regulators of the senescence process. Here, we describe the identification and functional characterization of the NAC transcription factor gene, OsY37 (Oryza sativa Yellow37, ONAC011) obtained from Oryza sativa cv. indica, and japonica. We created transgenic plants expressing the OsY37 gene under the control of a strong and constitutive CaMV35S promoter. The resulting transgenic plants overexpressing OsY37 gene showed early heading and precocious senescence phenotype of flag leaves compared with wild-type plants. By contrast, blocking the function of this gene via RNAi (RNA interference) and CRES-T (Chimeric Repressor Silencing Technology) technology, delayed both heading time and leaf senescence. Furthermore, knockdown of OsY37 expression caused dwarfism and high accumulation of chlorophyll during the vegetative phase. Irrespective of early or delayed senescence, transgenic plants showed reduced grain yields. Our results indicate that OsY37 acts as a positive regulator of heading and senescence during the reproductive phase in rice. In addition, OsY37 may be involved in plant development and grain yield

    The Arabidopsis thaliana STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis[C][W]

    No full text
    Biosynthesis of the plant hormone auxin must be tightly controlled. This work shows that the STYLISH1 protein of the plant species Arabidopsis thaliana plays an important role in this process by directly binding to and activating at least one of the auxin biosynthesis genes
    corecore