14 research outputs found

    Material incorporation inside single-walled carbon nanotubes using plasma-ion irradiation method

    Get PDF
    科研費報告書収録論文(課題番号:13852016/研究代表者:畠山力三/プラズマイオン照射による新機能性進化ナノチューブ創製法の開発

    An Externally-Applied, Natural-Mineral-Based Novel Nanomaterial IFMC Improves Cardiopulmonary Function under Aerobic Exercise

    No full text
    Nanotechnology has widespread applications in sports; however, there are very few studies reporting the use of nanotechnology to enhance physical performance. We hypothesize that a natural-mineral-based novel nanomaterial, which was developed from Japanese hot springs, might overcome the limitations. We examined if it could enhance physical performance. We conducted a treadmill exercise test on 18 students of athletic clubs at Fukushima University, Japan, and measured heart rate, oxygen consumption, maximal oxygen consumption, CO2 production, and respiratory quotient 106 times in total. The results showed that the elevation of heart rate was significantly suppressed in the natural-mineral-based nanomaterial group, while no differences were observed in oxygen consumption, maximal oxygen consumption, CO2 production, and respiratory quotient between groups. To our knowledge, this result is the first evidence where an improvement of cardiovascular and pulmonary functions was induced by bringing a natural-mineral-based nanomaterial into contact with or close to a living body without pharmacological intervention or physical intervention. This could open new avenue of biomedical industries even in an eco-friendly direction. The precise mechanisms remain a matter for further investigation; however, we may assume that endothelial NO synthase, hemoglobin and endothelium-derived hyperpolarizing factor are deeply involved in the improvement of cardiovascular and pulmonary functions

    Hepatic Artery Embolization Induces the Local Overexpression of Transforming Growth Factor β1 in a Rat Hepatoma Model

    Get PDF
    Introduction: The underlying mechanism involved in the recurrence of hepatoma after hepatic arterial embolization (HAE) is not adequately examined. An immunosuppressive cytokine, transforming growth factor β1 (TGF-β1), can lead to tumor progression and is affected by hypoxia in various cancers. The study aimed to assess the effect of HAE on the expression of TGF-β1 in a rat hepatoma model. Methods: Sprague-Dawley rats bearing N1S1 hepatoma cells underwent HAE (HAE group, n = 5) or sham treatment (sham group, n = 4). The animals were euthanized at 48 h, and liver tissues were harvested. Immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR) were performed to compare the expression of TGF-β1 and hypoxia-inducible factor 1α (HIF-1α) between the HAE and sham groups. In vitro experiments with the N1S1 cell line were also performed under normoxic (21% O2) or hypoxic (1% O2) conditions for 48 h, and the expression of TGF-β1 and HIF-1α was assessed with western blotting and enzyme-linked immunosorbent assay. Statistical data comparisons were performed by Student t test. Results: IHC showed that both the TGF-β1-positive and HIF-1α-positive tumor peripheral areas were larger in the HAE group (6.59 ± 2.49 and 10.26 ± 4.14%; p < 0.001, respectively) than in the sham group (0.34 ± 0.41 and 0.40 ± 0.84% respectively). Similarly, qPCR showed that the mRNA expression levels of TGF-β1 and HIF-1α were higher (1.95 ± 0.38-fold and 1.62 ± 0.37-fold; p < 0.001 and p = 0.002, respectively) in the HAE group than those in the sham group. TGF-β1 expression was suppressed when HIF-1α inhibitors were added (p = 0.001), and HIF-1α expression was upregulated when exogenous TGF-β1 was added (p = 0.033) in N1S1 cells. Conclusion: HAE enhanced local TGF-β1 expression in a rat hepatoma model. In vitro experiments suggest that HAE-induced hypoxic stress may trigger the interdependent expression of TGF-β1 and HIF-1α
    corecore