19 research outputs found

    Generation, Purification and Transplantation of Photoreceptors Derived from Human Induced Pluripotent Stem Cells

    Get PDF
    Background: Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells. Methodology/Physical Findings: In this report we have used a similar method to direct induced pluripotent stem cells (iPS) from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS) after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers. Conclusions: This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells

    Trisomy Correction in Down Syndrome Induced Pluripotent Stem Cells

    Get PDF
    SummaryHuman trisomies can alter cellular phenotypes and produce congenital abnormalities such as Down syndrome (DS). Here we have generated induced pluripotent stem cells (iPSCs) from DS fibroblasts and introduced a TKNEO transgene into one copy of chromosome 21 by gene targeting. When selecting against TKNEO, spontaneous chromosome loss was the most common cause for survival, with a frequency of ∼10−4, while point mutations, epigenetic silencing, and TKNEO deletions occurred at lower frequencies in this unbiased comparison of inactivating mutations. Mitotic recombination events resulting in extended loss of heterozygosity were not observed in DS iPSCs. The derived, disomic cells proliferated faster and produced more endothelia in vivo than their otherwise isogenic trisomic counterparts, but in vitro hematopoietic differentiation was not consistently altered. Our study describes a targeted removal of a human trisomy, which could prove useful in both clinical and research applications

    Human Gene Targeting Favors Insertions Over Deletions

    No full text
    Gene targeting is a powerful technique for manipulating the human genome, but few studies have directly compared the targeting frequencies of various types of vector constructs. Here we show that similar targeting constructs are able to insert nucleotides at the homologous chromosomal target locus more efficiently than they can delete nucleotides, and combination insertion/deletion vectors appear to target at intermediate frequencies. This holds true for deletions ranging from 1 to 334 bp and insertions ranging from 1 to 1332 bp. In addition, vectors designed to inactivate the human hypoxanthine phosphoribosyltransferase gene (HPRT) by deleting nucleotides often produced rearrangements at the target locus that in many cases were due to insertions of multimerized vector constructs, effectively converting a deletion vector into an insertion vector. These findings were obtained when adeno-associated virus vectors were used to efficiently deliver single-stranded DNA targeting constructs, but the same phenomenon was also observed when transfecting linearized double-stranded plasmids. Thus human cells distinguish between deletion and insertion vectors and process their recombination intermediates differently, presumably at the heteroduplex stage, with implications for the design of gene-targeting vectors and the evolution of human genomes
    corecore