175 research outputs found
Role of Internal Motions and Molecular Geometry on the NMR Relaxation of Hydrocarbons
The role of internal motions and molecular geometry on H NMR relaxation
times in hydrocarbons is investigated using MD (molecular dynamics)
simulations of the autocorrelation functions for in{\it tra}molecular
and in{\it ter}molecular H-H dipole-dipole interactions
arising from rotational () and translational () diffusion, respectively.
We show that molecules with increased molecular symmetry such as neopentane,
benzene, and isooctane show better agreement with traditional hard-sphere
models than their corresponding straight-chain -alkane, and furthermore that
spherically-symmetric neopentane agrees well with the Stokes-Einstein theory.
The influence of internal motions on the dynamics and relaxation of
-alkanes are investigated by simulating rigid -alkanes and comparing with
flexible (i.e. non-rigid) -alkanes. Internal motions cause the rotational
and translational correlation-times to get significantly shorter
and the relaxation times to get significantly longer, especially for
longer-chain -alkanes. Site-by-site simulations of H's along the chains
indicate significant variations in and across the chain,
especially for longer-chain -alkanes. The extent of the stretched (i.e.
multi-exponential) decay in the autocorrelation functions are
quantified using inverse Laplace transforms, for both rigid and flexible
molecules, and on a site-by-site bases. Comparison of measurements
with the site-by-site simulations indicate that cross-relaxation (partially)
averages-out the variations in and across the chain of
long-chain -alkanes. This work also has implications on the role of
nano-pore confinement on the NMR relaxation of fluids in the organic-matter
pores of kerogen and bitumen
NMR Spin-Rotation Relaxation and Diffusion of Methane
The translational-diffusion coefficient and the spin-rotation
contribution to the H NMR relaxation time for methane (CH) are
investigated using MD (molecular dynamics) simulations, over a wide range of
densities and temperatures , spanning the liquid, supercritical, and
gas phases. The simulated agree well with measurements, without any
adjustable parameters in the interpretation of the simulations. A minimization
technique is developed to compute the angular-velocity for non-rigid spherical
molecules, which is used to simulate the autocorrelation function
for spin-rotation interactions. With increasing (i.e. decreasing ),
shows increasing deviations from the single-exponential decay
predicted by the Langevin theory for hard spheres, and the deviations are
quantified using inverse Laplace transforms of . is
derived from using the kinetic model "km" for gases
(), and the diffusion model "dm" for liquids ().
shows better agreement with measurements at higher ,
while shows better agreement with measurements at lower
. is shown to dominate over the MD simulated H-H
dipole-dipole relaxation at high , while the opposite is found
at low . At high , the simulated spin-rotation correlation-time
agrees with the kinetic collision time for gases, from which
a new relation is inferred, without any adjustable
parameters
Lunar lander conceptual design
This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers
Modeling micelle formation and interfacial properties with iSAFT classical density functional theory
Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion
Spectroscopic Study of 41,45Sc Nuclei Through (d,n) Reactions on 40,44Ca at 25 MeV
開始ページ、終了ページ: 冊子体のページ付
Gamow-Teller Transition in the (p,n) Reaction on 42Ca and 44Ca
開始ページ、終了ページ: 冊子体のページ付
A Study of Single Proton States for the 21, 23Na Nuclei through (d,n) Reactions at 25 MeV
開始ページ、終了ページ: 冊子体のページ付
- …