77 research outputs found

    Role of Internal Motions and Molecular Geometry on the NMR Relaxation of Hydrocarbons

    Full text link
    The role of internal motions and molecular geometry on 1^1H NMR relaxation times T1,2T_{1,2} in hydrocarbons is investigated using MD (molecular dynamics) simulations of the autocorrelation functions for in{\it tra}molecular GR(t)G_R(t) and in{\it ter}molecular GT(t)G_T(t) 1^1H-1^1H dipole-dipole interactions arising from rotational (RR) and translational (TT) diffusion, respectively. We show that molecules with increased molecular symmetry such as neopentane, benzene, and isooctane show better agreement with traditional hard-sphere models than their corresponding straight-chain nn-alkane, and furthermore that spherically-symmetric neopentane agrees well with the Stokes-Einstein theory. The influence of internal motions on the dynamics and T1,2T_{1,2} relaxation of nn-alkanes are investigated by simulating rigid nn-alkanes and comparing with flexible (i.e. non-rigid) nn-alkanes. Internal motions cause the rotational and translational correlation-times τR,T\tau_{R,T} to get significantly shorter and the relaxation times T1,2T_{1,2} to get significantly longer, especially for longer-chain nn-alkanes. Site-by-site simulations of 1^1H's along the chains indicate significant variations in τR,T\tau_{R,T} and T1,2T_{1,2} across the chain, especially for longer-chain nn-alkanes. The extent of the stretched (i.e. multi-exponential) decay in the autocorrelation functions GR,T(t)G_{R,T}(t) are quantified using inverse Laplace transforms, for both rigid and flexible molecules, and on a site-by-site bases. Comparison of T1,2T_{1,2} measurements with the site-by-site simulations indicate that cross-relaxation (partially) averages-out the variations in τR,T\tau_{R,T} and T1,2T_{1,2} across the chain of long-chain nn-alkanes. This work also has implications on the role of nano-pore confinement on the NMR relaxation of fluids in the organic-matter pores of kerogen and bitumen

    NMR Spin-Rotation Relaxation and Diffusion of Methane

    Full text link
    The translational-diffusion coefficient DTD_T and the spin-rotation contribution to the 1^1H NMR relaxation time T1JT_{1J} for methane (CH4_4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities ρ\rho and temperatures TT, spanning the liquid, supercritical, and gas phases. The simulated DTD_T agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular-velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function G ⁣J(t)G_{\!J}(t) for spin-rotation interactions. With increasing DTD_T (i.e. decreasing ρ\rho), G ⁣J(t)G_{\!J}(t) shows increasing deviations from the single-exponential decay predicted by the Langevin theory for hard spheres, and the deviations are quantified using inverse Laplace transforms of G ⁣J(t)G_{\!J}(t). T1JT_{1J} is derived from G ⁣J(t)G_{\!J}(t) using the kinetic model "km" for gases (T1JkmT_{1J}^{km}), and the diffusion model "dm" for liquids (T1JdmT_{1J}^{dm}). T1JkmT_{1J}^{km} shows better agreement with T1T_1 measurements at higher DTD_T, while T1JdmT_{1J}^{dm} shows better agreement with T1T_1 measurements at lower DTD_T. T1JkmT_{1J}^{km} is shown to dominate over the MD simulated 1^1H-1^1H dipole-dipole relaxation T1RTT_{1RT} at high DTD_T, while the opposite is found at low DTD_T. At high DTD_T, the simulated spin-rotation correlation-time τJ\tau_J agrees with the kinetic collision time τK\tau_K for gases, from which a new relation 1/T1JkmDT1/T_{1J}^{km} \propto D_T is inferred, without any adjustable parameters

    Modeling micelle formation and interfacial properties with iSAFT classical density functional theory

    Get PDF
    Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion

    Detection and Production of Methane Hydrate

    Get PDF
    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation
    corecore