71 research outputs found

    Flow Cytometry Analysis of Changes in the DNA Content of the Polychlorinated Biphenyl Degrader Comamonas testosteroni TK102: Effect of Metabolites on Cell-Cell Separation

    No full text
    Flow cytometry was used to monitor changes in the DNA content of the polychlorinated biphenyl (PCB)-degrading bacterium Comamonas testosteroni TK102 during growth in the presence or absence of PCBs. In culture medium without PCBs, the majority of stationary-phase cells contained a single chromosome. In the presence of PCBs, the percentage of cells containing two chromosomes increased from 12% to approximately 50%. In contrast, addition of PCBs did not change the DNA contents of three species that are unable to degrade PCBs. In addition, highly chlorinated PCBs that are not degraded by TK102 did not result in a change in the DNA content. These results suggest that PCBs did not affect the DNA content of the cells directly; rather, the intermediate metabolites resulting from the degradation of PCBs caused the increase in DNA content. To study the effect of intermediate metabolites on the DNA content of the cells, four bph genes, bphA1, bphB, bphC, and bphD, were disrupted by gene replacement. The resulting mutant strains accumulated intermediate metabolites when they were grown in the presence of PCBs or biphenyl (BP). When the bphB gene was disrupted, the percentage of cells containing two chromosomes increased in cultures grown with PCBs or BP. When grown with BP, cultures of this mutant accumulated two intermediate metabolites, 2-hydroxybiphenyl (2-OHBP) and 3-OHBP. Addition of 2- or 3-OHBP to a wild-type TK102 and non-PCB-degrading species culture also resulted in an increase in the percentage of cells containing two chromosomes. Electron microscopy revealed that cell-cell separation was inhibited in this culture. This is the first report that hydroxy-BPs can inhibit bacterial cell separation while allowing continued DNA replication

    Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR

    Get PDF
    To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF(2 alpha) and 5-iPF(2 alpha)VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.5 x ADP]/[ATP +ADP + AMP]) remained unchanged after X-irradiation. In lowtemperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g = 2.004 and Fe-S cluster at g = 1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe-S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe-S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe-S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), o(cur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC

    Clinicopathological significance of core 3 O-glycan synthetic enzyme, β1,3-N-acetylglucosaminyltransferase 6 in pancreatic ductal adenocarcinoma.

    No full text
    Mucin-type O-glycans are involved in cancer initiation and progression, although details of their biological and clinicopathological roles remain unclear. The aim of this study was to investigate the clinicopathological significance of β1,3-N-acetylglucosaminyltransferase 6 (β3Gn-T6), an essential enzyme for the synthesis of core 3 O-glycan and several other O-glycans in pancreatic ductal adenocarcinoma (PDAC). We performed immunohistochemical and lectin-histochemical analyses to detect the expression of β3Gn-T6 and several O-glycans in 156 cases of PDAC with pancreatic intraepithelial neoplasias (PanINs) and corresponding normal tissue samples. The T antigen, Tn antigen, sialyl Lewis X (sLeX) antigen, and sLeX on core 2 O-glycan were more highly expressed in PDAC cells than in normal pancreatic duct epithelial cells (NPDEs). Conversely, the expression of 6-sulfo N-acetyllactosamine on extended core 1 O-glycan was found in NPDEs and was low in PDAC cells. These glycan expression levels were not associated with patient outcomes. β3Gn-T6 was expressed in ~20% of PDAC cases and 30-40% of PanINs but not in NPDEs. Higher expression of β3Gn-T6 was found in PDAC cells in more differentiated adenocarcinoma cases showing significantly longer disease-free survival in both univariate and multivariate analyses. In addition, the expression of β3Gn-T6 in PDAC cells and PanINs significantly correlated with the expression of MUC5AC in these cells, suggesting that β3Gn-T6 expression is related to cellular differentiation status of the gastric foveolar phenotype. Thus, it is likely that β3Gn-T6 expression in PDAC cells is a favorable prognostic factor in PDAC patients, and that the expression of β3Gn-T6 correlates with the gastric foveolar phenotype in pancreatic carcinogenesis

    Synthesis and Fluorescence of 2-pyrone Derivatives for Electroluminescence Devices(SPECIAL ISSUE CELEBRATING TEN YEARS OF ESTABLISHMENT OF FACULTY OF ENVIRONMENTAL STUDIES)

    Get PDF
    A convenient method of synthesizing 6-aryl- and 6-styryl-4-methylsulfanyl-2-oxo-2H-pyran derivatives through the reactions of various active methylene compounds with ketene dithioacetals and investigation of the fluorescence of the products in the solid state are described. The structure-activity relationships of various 2-pyrone derivatives and the effects of different aryl and styryl substituents on the aryl group were clarified. Materials which are strongly fluorescent in the primary colors (red, green, and blue) are the most important materials in the field of organic electroluminescence (EL). The 2-pyrone derivatives synthesized in this work emitted light at 447~620 nm in the solid state

    Nardilysin prevents amyloid plaque formation by enhancing α-secretase activity in an Alzheimer's disease mouse model.

    Get PDF
    Amyloid beta (Aβ) peptide, the main component of senile plaques in patients with Alzheimer's disease (AD), is derived from proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-secretases. Alpha-cleavage of APP by α-secretase has a potential to preclude the generation of Aβ because it occurs within the Aβ domain. We previously reported that a metalloendopeptidase, nardilysin (N-arginine dibasic convertase; NRDc) enhances α-cleavage of APP, which results in the decreased generation of Aβ in vitro. To clarify the in vivo role of NRDc in AD, we intercrossed transgenic mice expressing NRDc in the forebrain with an AD mouse model. Here we demonstrate that the neuron-specific overexpression of NRDc prevents Aβ deposition in the AD mouse model. The activity of α-secretase in the mouse brain was enhanced by the overexpression of NRDc, and was reduced by the deletion of NRDc. However, reactive gliosis adjacent to the Aβ plaques, one of the pathological features of AD, was not affected by the overexpression of NRDc. Taken together, our results indicate that NRDc controls Aβ formation through the regulation of α-secretase
    corecore