51 research outputs found

    Variation of Pressure-Induced Valence Transition with Approximation Degree in Yb-Based Quasicrystalline Approximants

    Full text link
    We have synthesized new Tsai-type Yb-based intermediate-valence approximant crystals (ACs) with different degree of approximation to quasicrystal, Zn--Au--Yb 1/1 and 2/1 AC, and studied the external pressure effect on their Yb mean-valence ν\nu. Whereas 1/1 AC distinctly exhibits a first-order-like jump in ν\nu at a transition pressure PvP_{\rm v}, 2/1 AC only shows an indistinct anomaly at PvP_{\rm v}. We have also studied the pressure dependence of the ν\nu of Au--Al--Yb 1/1 AC, which is a prototypal AC exhibiting pressure-induced quantum criticality. It shows a continuous valence anomaly at a critical pressure PcP_{\rm c} where the magnetic susceptibility diverges toward zero temperature, in contrast to the valence jump in the Zn--Au--Yb 1/1 AC. These results are discussed based on a theoretical model of quantum critical valence fluctuation

    High pressure evolution of Fe2_{2}O3_{3} electronic structure revealed by X-ray absorption

    Full text link
    We report the first high pressure measurement of the Fe K-edge in hematite (Fe2_2O3_3) by X-ray absorption spectroscopy in partial fluorescence yield geometry. The pressure-induced evolution of the electronic structure as Fe2_2O3_3 transforms from a high-spin insulator to a low-spin metal is reflected in the x-ray absorption pre-edge. The crystal field splitting energy was found to increase monotonically with pressure up to 48 GPa, above which a series of phase transitions occur. Atomic multiplet, cluster diagonalization, and density-functional calculations were performed to simulate the pre-edge absorption spectra, showing good qualitative agreement with the measurements. The mechanism for the pressure-induced phase transitions of Fe2_2O3_3 is discussed and it is shown that ligand hybridization significantly reduces the critical high-spin/low-spin pressure.Comment: 5 pages, 4 figures and 1 tabl

    Cost-effective upgrade of a focusing system for inelastic X-ray scattering experiments under high pressure

    Get PDF
    This paper describes a scheme utilizing a set of low-cost and compact Kirkpatrick–Baez mirrors for upgrading the optical system of the Taiwan Inelastic X-ray Scattering beamline at SPring-8 for high-pressure experiments using diamond-anvil cells. The scheme as implemented improves the focus to 13 µm × 16 µm with transmission of up to 72%

    1<i>s</i>2<i>p</i> resonant inelastic X-ray scattering combined dipole and quadrupole analysis method

    Get PDF
    In this study an analysis strategy towards using the resonant inelastic X-ray scattering (RIXS) technique more effectively compared with X-ray absorption spectroscopy (XAS) is presented. In particular, the question of when RIXS brings extra information compared with XAS is addressed. To answer this question the RIXS plane is analysed using two models: (i) an exciton model and (ii) a continuum model. The continuum model describes the dipole pre-edge excitations while the exciton model describes the quadrupole excitations. Applying our approach to the experimental 1s2p RIXS planes of VO2 and TiO2, it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments.</jats:p

    Pressure-induced anomalous valence crossover in cubic YbCu5-based compounds

    Get PDF
    A pressure-induced anomalous valence crossover without structural phase transition is observed in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with increasing pressure, indicating a pressure-induced crossover from a localized 4f (13) state to the valence fluctuation regime, which is not expected for Yb systems with conventional c-f hybridization. This result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under pressure and has been proposed as a potential candidate for a reentrant Yb(2+) state at high pressure, was also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, disproving a scenario of a reentrant non-magnetic Yb(2+) state at the second QCP

    Electronic structure of Kondo lattice compounds YbNi3X9 (X = Al, Ga) studied by hard x-ray spectroscopy

    Get PDF
    We have performed hard x-ray photoemission spectroscopy (HAXPES) for Yb-based Kondo lattice compounds; an antiferromagnetic heavy-fermion system YbNi3Al9 and a valence fluctuation system YbNi3Ga9. The Yb 3d5/2 spectra of YbNi3Ga9 showed both Yb2+ and Yb3+-derived structures indicating strong valence fluctuation, and the intensity of Yb2+ (Yb3+) structures gradually increased (decreased) on cooling. The Yb 3d5/2 spectra of YbNi3Al9 mostly consisted of Yb3+-derived structures and showed little temperature dependence. The Yb valences of YbNi3Ga9 and YbNi3Al9 at 22 K were evaluated to be 2.43 and 2.97, respectively. Based on the results of the Ni 2p and valence-band HAXPES spectra together with soft x-ray valence-band spectra, we described that the difference of physical properties of YbNi3X9 (X= Al, Ga) is derived from the differences of the 4f-hole level relative to the Fermi level (EF) and Ni 3d density of states at EF. The HAXPES results on the Yb valences were consistent with those obtained by x-ray absorption spectroscopy using the partial fluorescence yield mode and resonant x-ray emission spectroscopy at the Yb L3 edge
    corecore