2,358 research outputs found
Femtosecond laser nanostructuring of transparent materials: from bulk to fiber lasers
Progress in high power ultra-short pulse lasers has opened new frontiers in the physics of light-matter interactions and laser material processing. Recently there has been considerable interest in the application of femtosecond lasers to writing inside transparent materials and in particular to fabrication of three-dimensional microstructures
Material processing using ultrashort light pulses with tilted front
Femtosecond laser writing in glass is controlled by the polarization plane azimuth and intensity front tilt of light pulse. Polarization dependent distribution of extraordinary modifications along the light propagation direction is observed
Explicit Formulae Showing the Effects of Texture on Acoustoelastic Coefficients
It is well known that crystallographic texture not only modifies the elastic constants of polycrystalline aggregates at (unstressed) natural states but also affects their acoustoelastic coefficients when the aggregates are stressed. While exact knowledge about the effects of texture on acoustoelastic coefficients has hitherto remained wanting, such effects are usually assumed to be negligible and are ignored in practical applications of acoustoelasticity (cf. [1] for example). Concerning this common practice, Thompson et al. [2] have urged caution: Care must be taken when [this] assumption is made since the influence of texture on acoustoelastic constants is stronger than its influence on elastic moduli or velocities
Revealing extraordinary properties of femtosecond laser writing in glass
Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D micro- and nano-structuring [1].Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings and negative refractive index change (type 2) [2,3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. More recently it have observed that in a noncentrosymmetric medium, modification of the material can be different when light propagates in opposite directions (KaYaSo effect) [6]. Non-reciprocity is produced by magnetic field (Faraday effect) and movement of the medium with respect to the direction of light propagation: parallel (Sagnac effect) or perpendicular (KaYaSo effect). Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [7]. We attribute these new phenomena to the anisotropy of the light-matter interaction caused by space-time couplings in ultrashort light pulses. This intrinsic spatio-temporal asymmetry of light opens an interesting opportunity in the control of photon flux interacting with a target submerged into condensed isotropic medium. We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage
Recent advances in femtosecond laser writing inside transparent materials
Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D microand nano-structuring [1].T Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings and negative refractive index change (type 2) [2,3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. More recently it have observed that in a non-centrosymmetric medium, modification of the material can be different when light propagates in opposite directions (KaYaSo effect) [6]. Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [7]. We attribute these new phenomena to the anisotropy of the light-matter interaction caused by space-time couplings in ultrashort light pulses. We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage
Exploring The Roles of Nucleobase Desolvation and Shape Complementarity During The Misreplication of O6-Methylguanine
O6-methylguanine is a miscoding DNA lesion arising from the alkylation of guanine. This report uses the bacteriophage T4 DNA polymerase as a model to probe the roles hydrogen-bonding interactions, shape/size, and nucleobase desolvation during the replication of this miscoding lesion. This was accomplished by using transient kinetic techniques to monitor the kinetic parameters for incorporating and extending natural and non-natural nucleotides. In general, the efficiency of nucleotide incorporation does not depend on the hydrogen-bonding potential of the incoming nucleotide. Instead, nucleobase hydrophobicity and shape complementarity appear to be the preeminent factors controlling nucleotide incorporation. In addition, shape complementarity plays a large role in controlling the extension of various mispairs containing O6-methylguanine. This is evident as the rate constants for extension correlate with proper interglycosyl distances and symmetry between the base angles of the formed mispair. Base pairs not conforming to an acceptable geometry within the polymerase’s active site are refractory to elongation and are processed via exonuclease proofreading. The collective data set encompassing nucleotide incorporation, extension, and excision is used to generate a model accounting for the mutagenic potential of O6-methylguanine observed in vivo. In addition, kinetic studies monitoring the incorporation and extension of non-natural nucleotides identified an analog that displays high selectivity for incorporation opposite O6-methylguanine compared to unmodified purines. The unusual selectivity of this analog for replicating damaged DNA provides a novel biochemical tool to study translesion DNA synthesis
Analytic Energy Gradients for Multiconfigurational Self-Consistent Field Second-Order Quasidegenerate Perturbation Theory (MC-QDPT)
An analytic energy gradient method for second-order quasidegenerate perturbation theory with multiconfigurational self-consistent field reference functions (MC-QDPT) is derived along the lines of the response function formalism (RFF). According to the RFF, the gradients are calculated without solving coupled perturbed equations. Instead, it is necessary to solve seven sets of linear equations in order to determine Lagrangian multipliers, corresponding to four sets of parameter constraining conditions and three sets of additional parameter defining conditions in the Lagrangian. Just one of these linear equations is a large scale linear equation; the others are reducible to just partial differentiations or simple equations solvable by straightforward subroutines
- …