22 research outputs found

    Microinfusion of Pituitary Adenylate Cyclase-Activating Polypeptide into the Central Nucleus of Amygdala of the Rat Produces a Shift from an Active to Passive Mode of Coping in the Shock-Probe Fear/Defensive Burying Test

    Get PDF
    High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) nerve fibers are present in the central nucleus of amygdala (CeA), a brain region implicated in the control of fear-related behavior. This study evaluated PACAPergic modulation of fear responses at the CeA in male Sprague-Dawley rats. PACAP (50–100 pmol) microinfusion via intra-CeA cannulae produced increases in immobility and time the rats spent withdrawn into a corner opposite to the electrified probe compared to controls in the shock-probe fear/defensive burying test. Shock-probe burying and exploration, numbers of shocks received, locomotion distance, and velocity were all reduced by intra-CeA PACAP injection. Further, intra-CeA PACAP effects were manifested only when the animals were challenged by shock, as intra-CeA PACAP injections did not cause significant changes in the behaviors of unshocked rats. Thus, intra-CeA administration of PACAP produces a distinct reorganization of stress-coping behaviors from active (burying) to passive modes, such as withdrawal and immobility. These findings are potentially significant toward enhancing our understanding of the involvement of PACAP and the CeA in the neural basis of fear and anxiety

    Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial

    Get PDF
    Acute respiratory distress syndrome (ARDS) in COVID-19 is associated with high mortality. Mesenchymal stem cells are known to exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in COVID-19 ARDS. The objective of this study was to determine safety and explore efficacy of umbilical cord mesenchymal stem cell (UC-MSC) infusions in subjects with COVID-19 ARDS. A double-blind, phase 1/2a, randomized, controlled trial was performed. Randomization and stratification by ARDS severity was used to foster balance among groups. All subjects were analyzed under intention to treat design. Twenty-four subjects were randomized 1:1 to either UC-MSC treatment (n = 12) or the control group (n = 12). Subjects in the UC-MSC treatment group received two intravenous infusions (at day 0 and 3) of 100 ± 20 × 106 UC-MSCs; controls received two infusions of vehicle solution. Both groups received best standard of care. Primary endpoint was safety (adverse events [AEs]) within 6 hours; cardiac arrest or death within 24 hours postinfusion). Secondary endpoints included patient survival at 31 days after the first infusion and time to recovery. No difference was observed between groups in infusion-associated AEs. No serious adverse events (SAEs) were observed related to UC-MSC infusions. UC-MSC infusions in COVID-19 ARDS were found to be safe. Inflammatory cytokines were significantly decreased in UC-MSC-treated subjects at day 6. Treatment was associated with significantly improved patient survival (91% vs 42%, P =.015), SAE-free survival (P =.008), and time to recovery (P =.03). UC-MSC infusions are safe and could be beneficial in treating subjects with COVID-19 ARDS

    Blood glucose monitoring devices for type 1 diabetes: a journey from the food and drug administration approval to market availability

    No full text
    Blood glucose monitoring constitutes a pivotal element in the clinical management of Type 1 diabetes (T1D), a globally escalating metabolic disorder. Continuous glucose monitoring (CGM) devices have demonstrated efficacy in optimizing glycemic control, mitigating adverse health outcomes, and augmenting the overall quality of life for individuals afflicted with T1D. Recent progress in the field encompasses the refinement of electrochemical sensors, which enhances the effectiveness of blood glucose monitoring. This progress empowers patients to assume greater control over their health, alleviating the burdens associated with their condition, and contributing to the overall alleviation of the healthcare system. The introduction of novel medical devices, whether derived from existing prototypes or originating as innovative creations, necessitates adherence to a rigorous approval process regulated by the Food and Drug Administration (FDA). Diverse device classifications, stratified by their associated risks, dictate distinct approval pathways, each characterized by varying timelines. This review underscores recent advancements in blood glucose monitoring devices primarily based on electrochemical sensors and elucidates their regulatory journey towards FDA approval. The advent of innovative, non-invasive blood glucose monitoring devices holds promise for maintaining stringent glycemic control, thereby preventing T1D-associated comorbidities, and extending the life expectancy of affected individuals

    A systematic review of the association of Type I diabetes with sensorineural hearing loss.

    No full text
    ObjectivesType 1 diabetes (T1D) has been associated with several comorbidities such as ocular, renal, and cardiovascular complications. However, the effect of T1D on the auditory system and sensorineural hearing loss (SNHL) is still not clear. The aim of this study was to conduct a systematic review to evaluate whether T1D is associated with hearing impairment.MethodsThe databases PubMed, Science Direct, Scopus, and EMBASE were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Three reviewers independently screened, selected, and extracted data. The Joanna Briggs Institute (JBI) Critical Appraisal Tools for Analytical cross-sectional and case-control studies were used to perform quality assessment and risk of bias analysis on eligible studies.ResultsAfter screening a total of 463 studies, 11 eligible original articles were included in the review to analyze the effects of T1D on the auditory system. The included studies comprised cross-sectional and case-control investigations. A total of 5,792 patients were evaluated across the 11 articles included. The majority of the studies showed that T1D was associated with hearing impairment compared to controls, including differences in PTAs and OAEs, increased mean hearing thresholds, altered acoustic reflex thresholds, and problems with the medial olivocochlear (MOC) reflex inhibitory effect. Significant risk factors included older age, increased disease duration, and higher HbA1C levels.ConclusionsThis systematic review suggests that there is a correlation between T1D and impairment on the auditory system. A multidisciplinary collaboration between endocrinologists, otolaryngologists, and audiologists will lead to early detection of hearing impairment in people with T1D resulting in early intervention and better clinical outcomes in pursuit of improving the quality of life of affected individuals.RegistrationThis systematic review is registered in PROSPERO (CRD42023438576)

    Table_1_Gene-environment interaction in the pathophysiology of type 1 diabetes.pdf

    No full text
    Type 1 diabetes (T1D) is a complex metabolic autoimmune disorder that affects millions of individuals worldwide and often leads to significant comorbidities. However, the precise trigger of autoimmunity and disease onset remain incompletely elucidated. This integrative perspective article synthesizes the cumulative role of gene-environment interaction in the pathophysiology of T1D. Genetics plays a significant role in T1D susceptibility, particularly at the major histocompatibility complex (MHC) locus and cathepsin H (CTSH) locus. In addition to genetics, environmental factors such as viral infections, pesticide exposure, and changes in the gut microbiome have been associated with the development of T1D. Alterations in the gut microbiome impact mucosal integrity and immune tolerance, increasing gut permeability through molecular mimicry and modulation of the gut immune system, thereby increasing the risk of T1D potentially through the induction of autoimmunity. HLA class II haplotypes with known effects on T1D incidence may directly correlate to changes in the gut microbiome, but precisely how the genes influence changes in the gut microbiome, and how these changes provoke T1D, requires further investigations. These gene-environment interactions are hypothesized to increase susceptibility to T1D through epigenetic changes such as DNA methylation and histone modification, which in turn modify gene expression. There is a need to determine the efficacy of new interventions that target these epigenetic modifications such as “epidrugs”, which will provide novel avenues for the effective management of T1D leading to improved quality of life of affected individuals and their families/caregivers.</p
    corecore