3 research outputs found

    Realtime Motion Generation with Active Perception Using Attention Mechanism for Cooking Robot

    Full text link
    To support humans in their daily lives, robots are required to autonomously learn, adapt to objects and environments, and perform the appropriate actions. We tackled on the task of cooking scrambled eggs using real ingredients, in which the robot needs to perceive the states of the egg and adjust stirring movement in real time, while the egg is heated and the state changes continuously. In previous works, handling changing objects was found to be challenging because sensory information includes dynamical, both important or noisy information, and the modality which should be focused on changes every time, making it difficult to realize both perception and motion generation in real time. We propose a predictive recurrent neural network with an attention mechanism that can weigh the sensor input, distinguishing how important and reliable each modality is, that realize quick and efficient perception and motion generation. The model is trained with learning from the demonstration, and allows the robot to acquire human-like skills. We validated the proposed technique using the robot, Dry-AIREC, and with our learning model, it could perform cooking eggs with unknown ingredients. The robot could change the method of stirring and direction depending on the status of the egg, as in the beginning it stirs in the whole pot, then subsequently, after the egg started being heated, it starts flipping and splitting motion targeting specific areas, although we did not explicitly indicate them

    Production of Cisplatin-Incorporating Hyaluronan Nanogels via Chelating Ligand–Metal Coordination

    No full text
    Hyaluronan (HA) is a promising drug carrier for cancer therapy because of its CD44 targeting ability, good biocompatibility, and biodegradability. In this study, cisplatin (CDDP)-incorporating HA nanogels were fabricated through a chelating ligand–metal coordination cross-linking reaction. We conjugated chelating ligands, iminodiacetic acid or malonic acid, to HA and used them as a precursor polymer. By mixing the ligand-conjugated HA with CDDP, cross-linking occurred via coordination of the ligands with the platinum in CDDP, resulting in the spontaneous formation of CDDP-loaded HA nanogels. The nanogels showed pH-responsive release of CDDP, because the stability of the ligand–platinum complex decreases in an acidic environment. Cell viability assays for MKN45P human gastric cancer cells and Met-5A human mesothelial cells revealed that the HA nanogels selectively inhibited the growth of gastric cancer cells. In vivo experiments using a mouse model of peritoneal dissemination of gastric cancer demonstrated that HA nanogels specifically localized in peritoneal nodules after the intraperitoneal administration. Moreover, penetration assays using multicellular tumor spheroids indicated that HA nanogels had a significantly higher ability to penetrate tumors than conventional, linear HA. These results suggest that chelating-ligand conjugated HA nanogels will be useful for targeted cancer therapy
    corecore