2,215 research outputs found
Study of gravitational radiation from cosmic domain walls
In this paper, following the previous study, we evaluate the spectrum of
gravitational wave background generated by domain walls which are produced if
some discrete symmetry is spontaneously broken in the early universe. We apply
two different methods to calculate the gravitational wave spectrum: One is to
calculate the gravitational wave spectrum directly from numerical simulations,
and another is to calculate it indirectly by estimating the unequal time
anisotropic stress power spectrum of the scalar field. Both analysises indicate
that the slope of the spectrum changes at two characteristic frequencies
corresponding to the Hubble radius at the decay of domain walls and the width
of domain walls, and that the spectrum between these two characteristic
frequencies becomes flat or slightly red tilted. The second method enables us
to evaluate the GW spectrum semi-analytically for the frequencies which can not
be resolved in the finite box lattice simulations, but relies on the
assumptions for the unequal time correlations of the source.Comment: 17 pages, 9 figures; revised version of the manuscript, accepted for
publication in JCA
Evolution of String-Wall Networks and Axionic Domain Wall Problem
We study the cosmological evolution of domain walls bounded by strings which
arise naturally in axion models. If we introduce a bias in the potential, walls
become metastable and finally disappear. We perform two dimensional lattice
simulations of domain wall networks and estimate the decay rate of domain
walls. By using the numerical results, we give a constraint for the bias
parameter and the Peccei-Quinn scale. We also discuss the possibility to probe
axion models by direct detection of gravitational waves produced by domain
walls.Comment: 19 pages, 7 figures; revised version of the manuscript, accepted for
publication in JCA
Primordial perturbations from slow-roll inflation on a brane
In this paper we quantise scalar perturbations in a Randall-Sundrum-type
model of inflation where the inflaton field is confined to a single brane
embedded in five-dimensional anti-de Sitter space-time. In the high energy
regime, small-scale inflaton fluctuations are strongly coupled to metric
perturbations in the bulk and gravitational back-reaction has a dramatic effect
on the behaviour of inflaton perturbations on sub-horizon scales. This is in
contrast to the standard four-dimensional result where gravitational
back-reaction can be neglected on small scales. Nevertheless, this does not
give rise to significant particle production, and the correction to the power
spectrum of the curvature perturbations on super-horizon scales is shown to be
suppressed by a slow-roll parameter. We calculate the complete first order
slow-roll corrections to the spectrum of primordial curvature perturbations.Comment: 23 pages, 10 figure
Scalar perturbations in braneworld cosmology
We study the behaviour of scalar perturbations in the radiation-dominated era
of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk
and brane master wave equations. We find that density perturbations with
wavelengths less than a critical value (set by the bulk curvature length) are
amplified during horizon re-entry. This means that the radiation era matter
power spectrum will be at least an order of magnitude larger than the
predictions of general relativity (GR) on small scales. Conversely, we
explicitly confirm from simulations that the spectrum is identical to GR on
large scales. Although this magnification is not relevant for the cosmic
microwave background or measurements of large scale structure, it will have
some bearing on the formation of primordial black holes in Randall-Sundrum
models.Comment: 17 pages, 7 figure
Co-rich decagonal Al-Co-Ni: predicting structure, orientational order, and puckering
We apply systematic methods previously used by Mihalkovic et al. to predict
the structure of the `basic' Co-rich modification of the decagonal Al70 Co20
Ni10 layered quasicrystal, based on known lattice constants and previously
calculated pair potentials. The modelling is based on Penrose tile decoration
and uses Monte Carlo annealing to discover the dominant motifs, which are
converted into rules for another level of description. The result is a network
of edge-sharing large decagons on a binary tiling of edge 10.5 A. A detailed
analysis is given of the instability of a four-layer structure towards
-doubling and puckering of the atoms out of the layers, which is applied to
explain the (pentagonal) orientational order.Comment: IOP LaTex; 7 pp, 2 figures. In press, Phil. Mag. A (Proc. Intl. Conf.
on Quasicrystals 9, Ames Iowa, May 2005
Self-Reduction Rate of a Microtubule
We formulate and study a quantum field theory of a microtubule, a basic
element of living cells. Following the quantum theory of consciousness by
Hameroff and Penrose, we let the system to reduce to one of the classical
states without measurement if certain conditions are
satisfied(self-reductions), and calculate the self-reduction time (the
mean interval between two successive self-reductions) of a cluster consisting
of more than neighboring tubulins (basic units composing a microtubule).
is interpreted there as an instance of the stream of consciousness. We
analyze the dependence of upon and the initial conditions, etc.
For relatively large electron hopping amplitude, obeys a power law
, which can be explained by the percolation theory. For
sufficiently small values of the electron hopping amplitude, obeys an
exponential law, . By using this law, we estimate the
condition for to take realistic values
\raisebox{-0.5ex}{} sec as \raisebox{-0.5ex}
{} 1000.Comment: 7 pages, 9 figures, Extended versio
Josephson junction in cobalt-doped BaFe2As2 epitaxial thin films on (La, Sr)(Al, Ta)O3 bicrystal substrates
Josephson junctions were fabricated in epitaxial films of cobalt-doped
BaFe2As2 on [001]-tilt (La,Sr)(Al,Ta)O3 bicrystal substrates. 10m-wide
microbridges spanning a 30-degrees-tilted bicrystal grain boundary (BGB bridge)
exhibited resistively-shunted-junction (RSJ)-like current-voltage
characteristics up to 17 K, and the critical current was suppressed remarkably
by a magnetic field. Microbridges without a BGB did not show the RSJ-like
behavior, and their critical current densities were 20 times larger than those
of BGB bridges, confirming BGB bridges display a Josephson effect originating
from weakly-linked BGB
- …