1,676 research outputs found
Scalar perturbations in braneworld cosmology
We study the behaviour of scalar perturbations in the radiation-dominated era
of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk
and brane master wave equations. We find that density perturbations with
wavelengths less than a critical value (set by the bulk curvature length) are
amplified during horizon re-entry. This means that the radiation era matter
power spectrum will be at least an order of magnitude larger than the
predictions of general relativity (GR) on small scales. Conversely, we
explicitly confirm from simulations that the spectrum is identical to GR on
large scales. Although this magnification is not relevant for the cosmic
microwave background or measurements of large scale structure, it will have
some bearing on the formation of primordial black holes in Randall-Sundrum
models.Comment: 17 pages, 7 figure
Self-Reduction Rate of a Microtubule
We formulate and study a quantum field theory of a microtubule, a basic
element of living cells. Following the quantum theory of consciousness by
Hameroff and Penrose, we let the system to reduce to one of the classical
states without measurement if certain conditions are
satisfied(self-reductions), and calculate the self-reduction time (the
mean interval between two successive self-reductions) of a cluster consisting
of more than neighboring tubulins (basic units composing a microtubule).
is interpreted there as an instance of the stream of consciousness. We
analyze the dependence of upon and the initial conditions, etc.
For relatively large electron hopping amplitude, obeys a power law
, which can be explained by the percolation theory. For
sufficiently small values of the electron hopping amplitude, obeys an
exponential law, . By using this law, we estimate the
condition for to take realistic values
\raisebox{-0.5ex}{} sec as \raisebox{-0.5ex}
{} 1000.Comment: 7 pages, 9 figures, Extended versio
Primordial perturbations from slow-roll inflation on a brane
In this paper we quantise scalar perturbations in a Randall-Sundrum-type
model of inflation where the inflaton field is confined to a single brane
embedded in five-dimensional anti-de Sitter space-time. In the high energy
regime, small-scale inflaton fluctuations are strongly coupled to metric
perturbations in the bulk and gravitational back-reaction has a dramatic effect
on the behaviour of inflaton perturbations on sub-horizon scales. This is in
contrast to the standard four-dimensional result where gravitational
back-reaction can be neglected on small scales. Nevertheless, this does not
give rise to significant particle production, and the correction to the power
spectrum of the curvature perturbations on super-horizon scales is shown to be
suppressed by a slow-roll parameter. We calculate the complete first order
slow-roll corrections to the spectrum of primordial curvature perturbations.Comment: 23 pages, 10 figure
Correction:Zebra stripes through the eyes of their predators, zebras, and humans
The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras' primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra's outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage
Primordial perturbations from slow-roll inflation on a brane
In this paper we quantise scalar perturbations in a Randall-Sundrum-type model of inflation where the inflaton field is confined to a single brane embedded in five-dimensional anti-de Sitter space-time. In the high energy regime, small-scale inflaton fluctuations are strongly coupled to metric perturbations in the bulk and gravitational back-reaction has a dramatic effect on the behaviour of inflaton perturbations on sub-horizon scales. This is in contrast to the standard four-dimensional result where gravitational back-reaction can be neglected on small scales. Nevertheless, this does not give rise to significant particle production, and the correction to the power spectrum of the curvature perturbations on super-horizon scales is shown to be suppressed by a slow-roll parameter. We calculate the complete first order slow-roll corrections to the spectrum of primordial curvature perturbations
Advantageous grain boundaries in iron pnictide superconductors
High critical temperature superconductors have zero power consumption and
could be used to produce ideal electric power lines. The principal obstacle in
fabricating superconducting wires and tapes is grain boundaries-the
misalignment of crystalline orientations at grain boundaries, which is
unavoidable for polycrystals, largely deteriorates critical current density.
Here, we report that High critical temperature iron pnictide superconductors
have advantages over cuprates with respect to these grain boundary issues. The
transport properties through well-defined bicrystal grain boundary junctions
with various misorientation angles (thetaGB) were systematically investigated
for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal
substrates. The critical current density through bicrystal grain boundary
(JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle
thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO.
Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of
YBCO.Comment: to appear in Nature Communication
Nebular-Phase Spectra of Nearby Type Ia Supernovae
We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at
days after peak brightness using the Gemini South and Keck telescopes.
All of the SNe Ia in our sample were nearby, well separated from their host
galaxy's light, and have early-time photometry and spectroscopy from the Las
Cumbres Observatory (LCO). Parameters are derived from the light curves and
spectra such as peak brightness, decline rate, photospheric velocity, and the
widths and velocities of the forbidden nebular emission lines. We discuss the
physical interpretations of these parameters for the individual SNe Ia and the
sample in general, including comparisons to well-observed SNe Ia from the
literature. There are possible correlations between early-time and late-time
spectral features that may indicate an asymmetric explosion, so we discuss our
sample of SNe within the context of models for an offset ignition and/or white
dwarf collisions. A subset of our late-time spectra are uncontaminated by host
emission, and we statistically evaluate our nondetections of H emission
to limit the amount of hydrogen in these systems. Finally, we consider the
late-time evolution of the iron emission lines, finding that not all of our SNe
follow the established trend of a redward migration at days after
maximum brightness.Comment: 20 pages, 8 figures, 9 tables; accepted to MNRA
Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation Theory in Real and Redshift Spaces
We study the non-linear evolution of baryon acoustic oscillations in the
matter power spectrum and correlation function from the improved perturbation
theory (PT). Based on the framework of renormalized PT, we apply the {\it
closure approximation} that truncates the infinite series of loop contributions
at one-loop order, and obtain a closed set of integral equations for power
spectrum and non-linear propagator. The resultant integral expressions keep
important non-perturbative properties which can dramatically improve the
prediction of non-linear power spectrum. Employing the Born approximation, we
then derive the analytic expressions for non-linear power spectrum and the
predictions are made for non-linear evolution of baryon acoustic oscillations
in power spectrum and correlation function. A detailed comparison between
improved PT results and N-body simulations shows that a percent-level agreement
is achieved in a certain range in power spectrum and in a rather wider range in
correlation function. Combining a model of non-linear redshift-space
distortion, we also evaluate the power spectrum and correlation function in
correlation function. In contrast to the results in real space, the agreement
between N-body simulations and improved PT predictions tends to be worse, and a
more elaborate modeling for redshift-space distortion needs to be developed.
Nevertheless, with currently existing model, we find that the prediction of
correlation function has a sufficient accuracy compared with the
cosmic-variance errors for future galaxy surveys with volume of a few (Gpc/h)^3
at z>=0.5.Comment: 25 pages, 15 figures, accepted for publication in Phys.Rev.
- …