1,832 research outputs found

    Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB2 tapes

    Full text link
    We fabricated in situ powder-in-tube processed MgB2/Fe tapes using aromatic hydrocarbon of benzene, naphthalene, and thiophene as additives, and investigated the superconducting properties. We found that these aromatic hydrocarbons were very effective for increasing the Jc values. The Jc values of 20mol% benzene-added tapes reached 130A/mm2 at 4.2K and 10T. This value was almost comparable to that of 10mol% SiC-added tapes and about four times higher than that of tapes with no additions. Microstructure analyses suggest that this Jc enhancement is due to both the substitution of carbon for boron in MgB2 and the smaller MgB2 grain size.Comment: 6 pages, 4 figure

    Preserving Transportation Corridors for the Future: Another Look at Railroad Deeds in Washington State

    Get PDF
    This Comment will analyze the recent approach the Washington court has incorporated in settling trail development disputes across the State. In particular, the Comment will examine the court\u27s use of common law deed interpretation principles in upholding property rights while preserving valuable public transportation corridors. Furthermore, the Comment will show how the Washington court\u27s recent approach in interpreting railroad deeds has made recreational trail construction more appropriately a legislative matter, rather than a legal one. Section I of the Comment will begin with an historical overview of railroads in the United States, background on the public Rails-to-Trails movement, and an explanation of the underlying public policy and enabling federal law. Section II will then examine the leading federal case on railbanking. Section III will look at how Washington courts have addressed the railroad corridor preservation issue, particularly the Washington Supreme Court\u27s reasoning pertaining to deed interpretation in Brown v. State. Section IV will address how the court has handled rail corridor quiet title actions subsequent to Brown. Finally, Section V will conclude with observations for future trail construction within Washington State

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure

    Femtosecond Demagnetization and Hot Hole Relaxation in Ferromagnetic GaMnAs

    Full text link
    We have studied ultrafast photoinduced demagnetization in GaMnAs via two-color time-resolved magneto-optical Kerr spectroscopy. Below-bandgap midinfrared pump pulses strongly excite the valence band, while near-infrared probe pulses reveal sub-picosecond demagnetization that is followed by an ultrafast (\sim1 ps) partial recovery of the Kerr signal. Through comparison with InMnAs, we attribute the signal recovery to an ultrafast energy relaxation of holes. We propose that the dynamical polarization of holes through pp-dd scattering is the source of the observed probe signal. These results support the physical picture of femtosecond demagnetization proposed earlier for InMnAs, identifying the critical roles of both energy and spin relaxation of hot holes.Comment: 7 pages, 6 figure

    Randomly Diluted e_g Orbital-Ordered Systems

    Full text link
    Dilution effects on the long-range ordered state of the doubly degenerate ege_g orbital are investigated. Quenched impurities without the orbital degree of freedom are introduced in the orbital model where the long-range order is realized by the order-from-disorder mechanism. It is shown by the Monte-Carlo simulation and the cluster-expansion method that a decrease in the orbital ordering temperature by dilution is remarkable in comparison with that in the randomly diluted spin models. Tiltings of orbitals around impurity cause this unique dilution effects on the orbital systems. The present theory provides a new view point for the recent experiments in KCu1x_{1-x}Znx_xF3_3.Comment: 4 pages, 4 figure

    Spin dynamics of a one-dimensional spin-1/2 fully anisotropic Ising-like antiferromagnet in a transverse magnetic field

    Full text link
    We consider the one-dimensional Ising-like fully anisotropic S=1/2 Heisenberg antiferromagnetic Hamiltonian and study the dynamics of domain wall excitations in the presence of transverse magnetic field hxh_x. We obtain dynamical spin correlation functions along the magnetic field Sxx(q,ω)S^{xx}(q,\omega) and perpendicular to it Syy(q,ω)S^{yy}(q,\omega). It is shown that the line shapes of Sxx(q,ω)S^{xx}(q,\omega) and Syy(q,ω)S^{yy}(q,\omega) are purely symmetric at the zone-boundary. It is observed in Syy(q,ω)S^{yy}(q,\omega) for π/2<q<π\pi/2<q<\pi that the spectral weight moves toward low energy side with the increase of hxh_x. This model is applicable to study the spin dynamics of CsCoCl3_3 in the presence of weak interchain interactions.Comment: 19 pages, LaTeX, 12 eps figure

    Varietal differences in the texture of grape berries measured by penetration tests

    Get PDF
    Penetration tests were made on 8 mm thick flesh sections from grape berries of 22 cultivars of Vitis vinifera L. and 18 of Vitis labruscana Bailey. Deformation at the first major peak (DFP), maximum force (MF), force at the first major peak (FFP) and work to the first major peak (WFP) were recorded. High correlation coefficients were obtained between the rating of difficulty of breakdown on mastication in the sensory tests and DFP (r=0.86**), and the rating of flesh firmness in the sensory test and MF (r=0.84**). The mean value and variance of DFP and WFP were significantly higher in V. labruscana than in V. vinifera, whereas those of MF were nearly the same. DFP and MF were not correlated for V. vinifera cultivars, but were for V. labruscana cultivars (r=0.68**). These results indicate that the texture of V. labruscana had a wide variation in toughness whereas that of V. vinifera was brittle and did not have a wide variation in toughness; both groups had the same variation in firmness

    Squamous cell carcinoma antigen suppresses radiation-induced cell death

    Get PDF
    Previous study has demonstrated that squamous cell carcinoma antigen (SCCA) 1 attenuates apoptosis induced by TNFα, NK cell or anticancer drug. In this study, we have examined the effect of SCCA2, which is highly homologous to SCCA1, but has different target specificity, against radiation-induced apoptosis, together with that of SCCA1. We demonstrated that cell death induced by radiation treatment was remarkably suppressed not only in SCCA1 cDNA-transfected cells, but also in SCCA2 cDNA-transfected cells. In these transfectants, caspase 3 activity and the expression of activated caspase 9 after radiation treatment were suppressed. Furthermore, the expression level of phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) was suppressed compared to that of the control cells. The expression level of upstream stimulator of p38 MAPK, phosphorylated MKK3/MKK6, was also suppressed in the radiation-treated cells. Thus, both SCCA1 and SCCA2 may contribute to survival of the squamous cells from radiation-induced apoptosis by regulating p38 MAPK pathway. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Mechanism of carrier-induced ferromagnetism in magnetic semiconductors

    Full text link
    Taking into account both random impurity distribution and thermal fluctuations of localized spins, we have performed a model calculation for the carrier (hole) state in Ga1x_{1-x}Mnx_xAs by using the coherent potential approximation (CPA). The result reveals that a {\it p}-hole in the band tail of Ga1x_{1-x}Mnx_xAs is not like a free carrier but is rather virtually bounded to impurity sites. The carrier spin strongly couples to the localized {\it d} spins on Mn ions. The hopping of the carrier among Mn sites causes the ferromagnetic ordering of the localized spins through the double-exchange mechanism. The Curie temperature obtained by using conventional parameters agrees well with the experimental result.Comment: 7 pages, 4 figure
    corecore