276 research outputs found

    Proof of the Hyperplane Zeros Conjecture of Lagarias and Wang

    Full text link
    We prove that a real analytic subset of a torus group that is contained in its image under an expanding endomorphism is a finite union of translates of closed subgroups. This confirms the hyperplane zeros conjecture of Lagarias and Wang for real analytic varieties. Our proof uses real analytic geometry, topological dynamics and Fourier analysis.Comment: 25 page

    On two-dimensional surface attractors and repellers on 3-manifolds

    Get PDF
    We show that if f:M3M3f: M^3\to M^3 is an AA-diffeomorphism with a surface two-dimensional attractor or repeller B\mathcal B and MB2 M^2_ \mathcal B is a supporting surface for B \mathcal B, then B=MB2\mathcal B = M^2_{\mathcal B} and there is k1k\geq 1 such that: 1) MB2M^2_{\mathcal B} is a union M12...Mk2M^2_1\cup...\cup M^2_k of disjoint tame surfaces such that every Mi2M^2_i is homeomorphic to the 2-torus T2T^2. 2) the restriction of fkf^k to Mi2M^2_i (i{1,...,k})(i\in\{1,...,k\}) is conjugate to Anosov automorphism of T2T^2

    Search for two-neutrino double electron capture on 124^{124}Xe with the XMASS-I detector

    Full text link
    Double electron capture is a rare nuclear decay process in which two orbital electrons are captured simultaneously in the same nucleus. Measurement of its two-neutrino mode would provide a new reference for the calculation of nuclear matrix elements whereas observation of its neutrinoless mode would demonstrate lepton number violation. A search for two-neutrino double electron capture on 124^{124}Xe is performed using 165.9 days of data collected with the XMASS-I liquid xenon detector. No significant excess above background was observed and we set a lower limit on the half-life as 4.7×10214.7 \times 10^{21} years at 90% confidence level. The obtained limit has ruled out parts of some theoretical expectations. We obtain a lower limit on the 126^{126}Xe two-neutrino double electron capture half-life of 4.3×10214.3 \times 10^{21} years at 90% confidence level as well.Comment: 6 pages, 3 figures, accepted for publication in Physics Letters

    Direct dark matter search by annual modulation in XMASS-I

    Get PDF
    A search for dark matter was conducted by looking for an annual modulation signal due to the Earth's rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposure accumulated between November 2013 and March 2015. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, the exclusion upper limit of the WIMP-nucleon cross section 4.3×\times1041^{-41}cm2^2 at 8 GeV/c2^2 was obtained and we exclude almost all the DAMA/LIBRA allowed region in the 6 to 16 GeV/c2^2 range at \sim1040^{-40}cm2^2. The result of a simple modulation analysis, without assuming any specific dark matter model but including electron/γ\gamma events, showed a slight negative amplitude. The pp-values obtained with two independent analyses are 0.014 and 0.068 for null hypothesis, respectively. we obtained 90\% C.L. upper bounds that can be used to test various models. This is the first extensive annual modulation search probing this region with an exposure comparable to DAMA/LIBRA.Comment: 5 pages, 4 figure

    Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I

    Get PDF
    We have searched for exotic neutrino-electron interactions that could be produced by a neutrino millicharge, by a neutrino magnetic moment, or by dark photons using solar neutrinos in the XMASS-I liquid xenon detector. We observed no significant signals in 711 days of data. We obtain an upper limit for neutrino millicharge of 5.4×\times1012e^{-12} e at 90\% confidence level assuming all three species of neutrino have common millicharge. We also set flavor dependent limits assuming the respective neutrino flavor is the only one carrying a millicharge, 7.3×1012e7.3 \times 10^{-12} e for νe\nu_e, 1.1×1011e1.1 \times 10^{-11} e for νμ\nu_{\mu}, and 1.1×1011e1.1 \times 10^{-11} e for ντ\nu_{\tau}. These limits are the most stringent yet obtained from direct measurements. We also obtain an upper limit for the neutrino magnetic moment of 1.8×\times1010^{-10} Bohr magnetons. In addition, we obtain upper limits for the coupling constant of dark photons in the U(1)BLU(1)_{B-L} model of 1.3×\times106^{-6} if the dark photon mass is 1×103\times 10^{-3} MeV/c2/c^{2}, and 8.8×\times105^{-5} if it is 10 MeV/c2/c^{2}

    Resolving theta_{23} Degeneracy by Accelerator and Reactor Neutrino Oscillation Experiments

    Get PDF
    If the lepton mixing angle theta_{23} is not maximal, there arises a problem of ambiguity in determining theta_{23} due to the existence of two degenerate solutions, one in the first and the other in the second octant. We discuss an experimental strategy for resolving the theta_{23} octant degeneracy by combining reactor measurement of theta_{13} with accelerator nu_{mu} disappearance and nu_{e} appearance experiments. The robustness of the theta_{23} degeneracy and the difficulty in lifting it only by accelerator experiments with conventional nu_{mu} (and nu_{mu}-bar) beam are demonstrated by analytical and numerical treatments. Our method offers a way to overcome the difficulty and can resolve the degeneracy between solutions sin^2 theta_{23} = 0.4 and sin^2 theta_{23} = 0.6 if sin^2 (2 theta_{13}) \gsim 0.05 at 95% CL by assuming the T2K phase II experiment and a reactor measurement with an exposure of 10 GW.kt.yr. The dependence of the resolving power of the octant degeneracy on the systematic errors of reactor experiments is also examined.Comment: 23 pages, 9 figures, version to appear in PR

    The K2K SciBar Detector

    Get PDF
    A new near detector, SciBar, for the K2K long-baseline neutrino oscillation expe riment was installed to improve the measurement of neutrino energy spectrum and to study neutrino interactions in the energy region around 1 GeV. SciBar is a 'fully active' tracking detector with fine segmentation consisting of plastic scintillator bars. The detector was constructed in summer 2003 and is taking data since October 2003. The basic design and initial performance is presented.Comment: 7 pages, 4figures, Contributed to Proceedings of the 10th Vienna Conference on Instrumentation, Vienna, February 16-21, 200
    corecore