69 research outputs found

    The Conserved Domain CR2 of Epstein–Barr Virus Nuclear Antigen Leader Protein Is Responsible Not Only for Nuclear Matrix Association but Also for Nuclear Localization

    Get PDF
    AbstractThere is a growing body of evidence for the importance of the nuclear matrix in various nuclear events including gene expression and DNA replication. Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a nuclear matrix-associated protein that has been suggested to play an important role in EBV-induced transformation. To define the biological significance of the association of EBNA-LP with the nuclear matrix, we mapped the domain of EBNA-LP responsible for nuclear matrix association and investigated the functions of the EBNA-LP mutant mutagenized by substitution of alanines for the cluster of arginine residues in the mapped region. The results of the present study were as follows. (i) Transiently expressed EBNA-LP in COS-7 or BOSC23 cells was associated with the nuclear matrix, similarly to that in EBV-infected B cells. (ii) Mutational analysis of EBNA-LP revealed that a 10-amino acid segment of EBNA-LP is critical for nuclear matrix association of the protein. Interestingly, the identified region overlapped with the region CR2 of EBNA-LP conserved among a subset of primate gammaherpesviruses. The identified segment is referred to as EBNA-LP NMTS (nuclear matrix targeting signal). (iii) The EBNA-LP mutant with the arginine to alanine substitutions in NMTS was no longer localized not only to the nuclear matrix but also to the nucleus. (iv) The EBNA-LP mutant lacked its ability to coactivate EBNA-2-dependent transactivation. These results indicated that EBNA-LP needs to be localized in the nucleus and/or associated with the nuclear matrix through CR2 to elicit its function such as the coactivation of the EBNA-2-dependent transcriptional activation

    Mechanical stability of orthodontic miniscrew depends on a thread shape

    Get PDF
    Background/purpose: Primary stability of orthodontic miniscrew system is of great importance in maintaining stable anchorage during a treatment period. Thus, this study aimed to examine whether the thread shape of orthodontic miniscrew had an effect on its mechanical stability in bone. Materials and methods: Three different types of miniscrews (type A and B with a regular thread shape; type C with a novel thread shape) were placed in artificial bone block with different artificial cortical bone thickness of 1.5, 2.0 and 3.0 mm. Values of maximum insertion torque (MIT), removal torque (RT), torque ratio (TR), screw mobility, static stiffness (K), dynamic stiffness (K∗) and energy dissipation (tan δ) ability were assessed for each miniscrew system. Results: The MIT, RT, TR and K of type C miniscrew were significantly greater than those of type A and B miniscrews when the miniscrews were placed in the thinner artificial bone. Furthermore, the TR value of type C miniscrew was more than 1, indicating the MRT value was larger than the MIT value in the novel miniscrew. The values of K∗ and tan δ were almost similar among the three types of miniscrews. Conclusion: The miniscrew with a novel thread shape showed a higher initial stability compared to those with a regular thread shape. Thus, in order to obtain a sufficient initial stability, it is important to select the type of screw thread that is appropriate for the thickness of the cortical bone

    Prevalence and Distribution of Ossified Lesions in the Whole Spine of Patients with Cervical Ossification of the Posterior Longitudinal Ligament A Multicenter Study (JOSL CT study)

    Get PDF
    Ossification of the posterior longitudinal ligament (OPLL) can cause severe and irreversible paralysis in not only the cervical spine but also the thoracolumbar spine. To date, however, the prevalence and distribution of OPLL in the whole spine has not been precisely evaluated in patients with cervical OPLL. Therefore, we conducted a multi-center study to comprehensively evaluate the prevalence and distribution of OPLL using multi-detector computed tomography (CT) images in the whole spine and to analyze what factors predict the presence of ossified lesions in the thoracolumbar spine in patients who were diagnosed with cervical OPLL by plain X-ray. Three hundred and twenty-two patients with a diagnosis of cervical OPLL underwent CT imaging of the whole spine. The sum of the levels in which OPLL was present in the whole spine was defined as the OP-index and used to evaluate the extent of ossification. The distribution of OPLL in the whole spine was compared between male and female subjects. In addition, a multiple regression model was used to ascertain related factors that affected the OP-index. Among patients with cervical OPLL, women tended to have more ossified lesions in the thoracolumbar spine than did men. A multiple regression model revealed that the OP-index was significantly correlated with the cervical OP-index, sex (female), and body mass index. Furthermore, the prevalence of thoracolumbar OPLL in patients with a cervical OP-index ≥ 10 was 7.8 times greater than that in patients with a cervical OP-index ≤ 5. The results of this study reveal that the extent of OPLL in the whole spine is significantly associated with the extent of cervical OPLL, female sex, and obesity

    Reliability and validity of the patient disability-oriented diagnostic nomenclature system for prosthetic dentistry

    Get PDF
    Purpose: The Japan Prosthodontic Society (JPS) has proposed a new diagnostic nomenclature system (DNS), based on pathogenesis and etiology, to facilitate and improve prosthodontic treatment. This systemspecifies patient disability and the causative factor (i.e. ‘‘B (disability) caused by A (causative factor)’’). The purpose of this study was to examine the reliability and validity of this DNS. Study selection: The JPS Clinical Guideline Committee assessed mock patient charts and formulated disease names using the new DNS. Fifty validators, comprising prosthodontic specialists and dental residents, made diagnoses using the same patient charts. Reliability was evaluated as the consistency of the disease names among the validators, and validity was evaluated using the concordance rate of the disease names with the reference disease names. Results: Krippendorff’s α was 0.378 among all validators, 0.370 among prosthodontic specialists, and 0.401 among dental hospital residents. Krippendorff’s α for 10 validators (3 specialists and 7 residents) with higher concordance rates was 0.524. Two validators (1 specialist and 1 resident) with the highest concordance rates had a Krippendorff’s α of 0.648. Common disease names had higher concordance rates, while uncommon disease names showed lower concordance rates. These rates did not show correlation with clinical experience of the validator or time taken to devise the disease name. Conclusions: High reliability was not found among all validators; however, validators with higher concordance rates showed better reliability. Furthermore, common disease names had higher concordance rates. These findings indicate that the new DNS for prosthodontic dentistry exhibits clinically acceptable reliability and validity

    歯科矯正用アンカースクリューおよび周囲骨の応力分布に及ぼす埋入深さの影響 : 有限要素法による解析

    Get PDF
    We aimed to elucidate stress distribution in miniscrews and the surrounding bone when miniscrews inserted at different depths were implanted vertically or obliquely. The distributions of the equivalent stress on the screw surface and the minimum principal stress in the surrounding bone were calculated using finite element models. When the miniscrews were inserted vertically and obliquely, screw head displacement, greatest equivalent stress on the miniscrew surface, and absolute value of minimum principal stresses in the surrounding bone decreased with increasing insertion depth. Stresses in the obliquely inserted miniscrew with upward traction were smaller than in other insertion conditions, irrespective of insertion depth. With the application of orthodontic force, stress distribution around the miniscrew and surrounding bone is closely related to the insertion depth and insertion angle, which mutually affect each other. In particular, the obliquely inserted miniscrew with upward traction might be the most secure against screw failure and fracture
    corecore