8,827 research outputs found

    The interplay between obesity and cancer: a fly view

    Get PDF
    Accumulating epidemiological evidence indicates a strong clinical association between obesity and an increased risk of cancer. The global pandemic of obesity indicates a public health trend towards a substantial increase in cancer incidence and mortality. However, the mechanisms that link obesity to cancer remain incompletely understood. The fruit fly Drosophila melanogaster has been increasingly used to model an expanding spectrum of human diseases. Fly models provide a genetically simpler system that is ideal for use as a first step towards dissecting disease interactions. Recently, the combining of fly models of diet-induced obesity with models of cancer has provided a novel model system in which to study the biological mechanisms that underlie the connections between obesity and cancer. In this Review, I summarize recent advances, made using Drosophila, in our understanding of the interplay between diet, obesity, insulin resistance and cancer. I also discuss how the biological mechanisms and therapeutic targets that have been identified in fly studies could be utilized to develop preventative interventions and treatment strategies for obesityassociated cancers

    Similarity between nuclear rainbow and meteorological rainbow -- evidence for nuclear ripples

    Get PDF
    We present evidence for the nuclear ripples superimposed on the Airy structure of the nuclear rainbow, which is similar to the meteorological rainbow. The mechanism of the nuclear ripples is also similar to that of the meteorological rainbow, which is caused by the interference between the externally reflective waves and refractive waves. The nuclear ripple structure was confirmed by analyzing the elastic angular distribution in 16^{16}O+12^{12}C rainbow scattering at ELE_L=115.9 MeV using the coupled channels method by taking account of coupling to the excited states of 12^{12}C and 16^{16}O with a double folding model derived from a density-dependent effective nucleon-nucleon force with realistic wave functions for 12^{12}C and 16^{16}O. The coupling to the excited states plays the role of creating the external reflection.Comment: 6 pages, 6 figure

    Evidence for a secondary bow in Newton's zero-order nuclear rainbow

    Get PDF
    Rainbows are generally considered to be caused by static refraction and reflection. A primary and a secondary rainbow appear due to refraction and internal reflection in a raindrop as explained by Newton. The quantum nuclear rainbow, which is generated by refraction in the nucleus droplet, only has a "primary" rainbow. Here we show for the first time evidence for the existence of a secondary nuclear rainbow generated dynamically by coupling to an excited state without internal reflection. This has been demonstrated for experimental 16^{16}O+12^{12}C scattering using the coupled channel method with an extended double folding potential derived from microscopic realistic wave functions for 12^{12}C and 16^{16}O.Comment: 5 pages, 4 figure

    Production Spectra of 3^3He(π\pi, KK) Reactions with Continuum Discretized Coupled Channels

    Full text link
    We investigate theoretically Λ\Lambda production spectra of 3^3He(π\pi, KK) reactions at pπ=p_\pi= 1.05--1.20 GeV/cc in the distorted-wave impulse approximation, using the continuum-discretized coupled-channel method. The production cross section of a Λ3^3_\LambdaH(1/2+^+) ground state is also discussed.Comment: 8 pages, 4 figures; contribution to the Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018), Tsukuba, November 13-17, 201
    corecore