56 research outputs found
Recommended from our members
Rethinking Rewriting: Tribal Constitutional Amendment And Reform
This Essay examines the recent wave of American Indian tribal constitutional change through the framework of subnational constitutional theory. When tribes rewrite their constitutions, they not only address internal tribal questions and communicate tribal values, but also engage with other subnational entities, i.e. states, and the federal government. This Essay applies that framework to a study of tribal constitutional amendment and reform procedures. Focusing on the processes of constitutional change produces insight into tribes' status as “domestic dependent sovereigns” in the contemporary era of self-determination, a status reflected in the opportunities, and limitations, inherent in tribal constitutions. In so doing, this Essay aims to highlight an aspect of tribal constitution writing that enables successful reform and communicates the significance and goals of constitutionalism within the tribal context
GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes
Transcriptional profiling of human embryonic stem cells differentiating into blast cells reveals that erythroblasts are the predominant cell type in the blast cell population. In silico comparisons with publicly available data sets revealed the presence of endothelia, cardiomyocytes and hematopoietic lineages
Urban park use during the COVID-19 pandemic:Are socially vulnerable communities disproportionately impacted?
The COVID-19 pandemic altered human behavior around the world. To maintain mental and physical health during periods of lockdown and quarantine, people often engaged in outdoor, physically distanced activities such as visits to parks and greenspace. However, research tracking outdoor recreation patterns during the pandemic has yielded inconsistent results, and few studies have explored the impacts of COVID-19 on park use across diverse neighborhoods. We used a mixed methods approach to examine changes in park use patterns in cities across North Carolina, USA, during the COVID-19 pandemic, with an emphasis on impacts in socially vulnerable communities (based on racial/ethnic composition and socioeconomic status). First, we surveyed a demographically representative sample of 611 urban residents during August 2020 to assess their use of outdoor park spaces before and during the pandemic. Second, we used cell phone location (i.e., geo-tracking) data to document changes in park visits within 605 socioeconomically diverse urban census tracts before (July 2019) and during (July 2020) the pandemic. Data from both methods revealed urban park use declined during the pandemic; 56% of survey respondents said they stopped or reduced park use, and geo-tracked park visits dropped by 15%. Park users also became more homogenous, with visits increasing the most for past park visitors and declining the most in socially vulnerable communities and among individuals who were BIPOC or lower-income. Our results raise concerns about urban park use during the COVID-19 pandemic and suggest pre-existing health disparities in socially vulnerable communities might be exacerbated by inequitable access and utilization of parks and greenspace
Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making
Machine learning (ML) is increasingly being used in image retrieval systems
for medical decision making. One application of ML is to retrieve visually
similar medical images from past patients (e.g. tissue from biopsies) to
reference when making a medical decision with a new patient. However, no
algorithm can perfectly capture an expert's ideal notion of similarity for
every case: an image that is algorithmically determined to be similar may not
be medically relevant to a doctor's specific diagnostic needs. In this paper,
we identified the needs of pathologists when searching for similar images
retrieved using a deep learning algorithm, and developed tools that empower
users to cope with the search algorithm on-the-fly, communicating what types of
similarity are most important at different moments in time. In two evaluations
with pathologists, we found that these refinement tools increased the
diagnostic utility of images found and increased user trust in the algorithm.
The tools were preferred over a traditional interface, without a loss in
diagnostic accuracy. We also observed that users adopted new strategies when
using refinement tools, re-purposing them to test and understand the underlying
algorithm and to disambiguate ML errors from their own errors. Taken together,
these findings inform future human-ML collaborative systems for expert
decision-making
Microscope 2.0: An Augmented Reality Microscope with Real-time Artificial Intelligence Integration
The brightfield microscope is instrumental in the visual examination of both
biological and physical samples at sub-millimeter scales. One key clinical
application has been in cancer histopathology, where the microscopic assessment
of the tissue samples is used for the diagnosis and staging of cancer and thus
guides clinical therapy. However, the interpretation of these samples is
inherently subjective, resulting in significant diagnostic variability.
Moreover, in many regions of the world, access to pathologists is severely
limited due to lack of trained personnel. In this regard, Artificial
Intelligence (AI) based tools promise to improve the access and quality of
healthcare. However, despite significant advances in AI research, integration
of these tools into real-world cancer diagnosis workflows remains challenging
because of the costs of image digitization and difficulties in deploying AI
solutions. Here we propose a cost-effective solution to the integration of AI:
the Augmented Reality Microscope (ARM). The ARM overlays AI-based information
onto the current view of the sample through the optical pathway in real-time,
enabling seamless integration of AI into the regular microscopy workflow. We
demonstrate the utility of ARM in the detection of lymph node metastases in
breast cancer and the identification of prostate cancer with a latency that
supports real-time workflows. We anticipate that ARM will remove barriers
towards the use of AI in microscopic analysis and thus improve the accuracy and
efficiency of cancer diagnosis. This approach is applicable to other microscopy
tasks and AI algorithms in the life sciences and beyond
- …