17 research outputs found

    How to obtain labeled proteins and what to do with them

    Get PDF
    We review new and established methods for the chemical modification of proteins in living cells and highlight recent applications. The review focuses on tag-mediated protein labeling methods, such as the tetracysteine tag and SNAP-tag, and new developments in this field such as intracellular labeling with lipoic acid ligase. Recent promising advances in the incorporation of unnatural amino acids into proteins are also briefly discussed. We describe new tools using tag-mediated labeling methods including the super-resolution microscopy of tagged proteins, the study of the interactions of proteins and protein domains, the subcellular targeting of synthetic ion sensors, and the generation of new semisynthetic metabolite sensors. We conclude with a view on necessary future developments, with one example being the selective labeling of non-tagged, native proteins in complex protein mixtures

    ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity

    Get PDF
    We present a novel voltage-sensitive hemicyanine dye ANNINE-6plus and describe its synthesis, its properties and its voltage-sensitivity in neurons. The dye ANNINE-6plus is a salt with a double positively charged chromophore and two bromide counterions. It is derived from the zwitterionic dye ANNINE-6. While ANNINE-6 is insoluble in water, ANNINE-6plus exhibits a high solubility of around 1 mM. Nonetheless, it displays a strong binding to lipid membranes. In contrast to ANNINE-6, the novel dye can be used to stain cells from aqueous solution without surfactants or organic solvents. In neuronal membranes, ANNINE-6plus exhibits the same molecular Stark effect as ANNINE-6. As a consequence, a high voltage-sensitivity is achieved with illumination and detection in the red end of the excitation and emission spectra, respectively. ANNINE-6plus will be particularly useful for sensitive optical recording of neuronal excitation when organic solvents and surfactants must be avoided as with intracellular or extracellular staining of brain tissue

    A synthetic approach to pyrazole functionalized polystyrene

    No full text

    Location, Tilt, and Binding: A Molecular Dynamics Study of Voltage-Sensitive Dyes in Biomembranes

    No full text
    We present a molecular dynamics study on the interaction of styryl-type voltage-sensitive dyes with a lipid membrane. In this work, voltage-sensitive dyes are proposed as interesting model amphiphiles for biomolecular simulation, due to the wealth of biophysical and thermodynamical data available on their behavior and their binding to lipid membranes. Taking this data as a basis, we tested the recently developed MARTINI coarse-grained model. The focus was on the fast computation of the free energy of membrane binding. As a first step, we investigated the tilt and location of a coarse-grained representation of the dye Di-4-ASPBS in a lipid membrane, and found good agreement with atomistic simulations and experimental data. Then, we performed umbrella sampling to obtain the theoretical binding free energy for a number of Di-4-ASPBS derivates. In most cases, simulation and experimental binding data were in good agreement regarding the impact of structural changes in the amphiphile on binding. The work yields a general molecular picture of how such structural variations lead to changes of the binding mode and binding strength of amphiphiles to lipid membranes. Further, it provides insights into the possibilities and current limitations of rapid free energy computation for membrane binding with the coarse-grained MARTINI model. The results suggest that the MARTINI model may be a generally useful tool for the study and optimization of molecules interacting with membranes, such as biophysical probes or pharmaceutical compounds.

    Semisynthetic fluorescent sensor proteins based on self-labeling protein tags

    No full text
    Genetically encoded fluorescent sensor proteins offer the possibility to probe the concentration of key metabolites in living cells. The approaches currently used to generate Such fluorescent sensor proteins lack. generality, as they require a protein that undergoes a conformational change upon metabolite binding. Here we present an approach that overcomes this limitation. Our biosensors consist of SNAP-tag, a fluorescent protein and a metabolite-binding protein. SNAP-tag is specifically labeled with a synthetic molecule containing a ligand of the metabolite-binding protein and a fluorophore. In the labeled sensor, the metabolite of interest displaces the intramolecular ligand from the binding protein, thereby shifting the sensor protein from a closed to an open conformation. The readout is a concomitant ratiometric change in the fluorescence intensities of the fluorescent protein and the tethered fluorophore. The observed ratiometric changes compare favorably with those achieved in genetically encoded fluorescent sensor proteins. Furthermore, the modular design of our sensors permits the facile generation of ratiometric fluorescent sensors at wavelengths not covered by autofluorescent proteins. These features should allow semisynthetic fluorescent sensor proteins based on SNAP-tag to become important tools for probing previously inaccessible metabolites

    Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments

    Get PDF
    The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investigate the partitioning of cholesterol in a systematic set of lipid bilayers. In addition to atomistic simulations, we undertook a large set of coarse grained simulations, which allowed longer time and length scales to be sampled. Our results agree with recent experiments that the rate of cholesterol flip-flop can be fast on physiological time scales, while extending our understanding of this process to a range of lipids. We predicted that the rate of flip-flop is strongly dependent on the composition of the bilayer. In polyunsaturated bilayers, cholesterol undergoes flip-flop on a submicrosecond time scale, while flip-flop occurs in the second range in saturated bilayers with high cholesterol content. We also calculated the free energy of cholesterol desorption, which can be equated to the excess chemical potential of cholesterol in the bilayer compared to water. The free energy of cholesterol desorption from a DPPC bilayer is 80 kJ/mol, compared to 67 kJ/mol for a DAPC bilayer. In general, cholesterol prefers more ordered and rigid bilayers and has the lowest affinity for bilayers with two polyunsaturated chains. Overall, the simulations provide a detailed molecular level thermodynamic description of cholesterol interactions with lipid bilayers, of fundamental importance to eukaryotic life.

    Benzothiazinones: prodrugs that covalently modify the decaprenylphosphoryl-ÎČ-D-ribose 2'-epimerase DprE1 of Mycobacterium tuberculosis

    No full text
    Benzothiazinones (BTZs) form a new class of potent antimycobacterial agents. Although the target of BTZs has been identified as decaprenylphosphoryl-ÎČ-D-ribose 2'-epimerase (DprE1), their detailed mechanism of action remains obscure. Here we demonstrate that BTZs are activated in the bacterium by reduction of an essential nitro group to a nitroso derivative, which then specifically reacts with a cysteine residue in the active site of DprE1
    corecore