571 research outputs found

    Insect transmission of Ceratocystis species associated with aspen cankers

    Get PDF

    Aspen mortality in Rocky Mountain campgrounds

    Get PDF
    Aspens die from canker disease infections as a result of mechanical injuries to the live bark inflicted by thoughtless campers. Dead trees usually are cut to reduce camper hazard. Aspen loss is related to campground age. A desirable aspen-type camp unit can be degraded to a treeless site of grass, forbs, and shrubs within 10 to 20 years. The management of aspen campgrounds must be altered if the resource is to be maintained

    Growth and decay losses in Colorado aspen

    Get PDF

    Forest Insect and Disease Management : Aspen Mortality at the Maroon Lake Campground

    Get PDF

    Fundamental results from microgravity cell experiments with possible commericial applications

    Get PDF
    Some of the major milestones are presented for studies in cell biology that were conducted by the Soviet Union and the United States in the upper layers of the atmosphere and in outer space for more than thirty-five years. The goals have changed as new knowledge is acquired and the priorities for the use of microgravity have shifted toward basic research and commercial applications. Certain details concerning the impact of microgravity on cell systems is presented. However, it needs to be emphasized that in planning and conducting microgravity experiments, there are some important prerequisites not normally taken into account. Apart from the required background knowledge of previous microgravity and ground-based experiments, the investigator should have the understanding of the hardware as a physical unit, the complete knowledge of its operation, the range of its capabilities and the anticipation of problems that may occur. Moreover, if the production of commercial products in space is to be manifested, data obtained from previous microgravity experiments must be used to optimize the design of flight hardware

    Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin

    Get PDF
    Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1–BVRA–bilirubin–PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management

    Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates

    Full text link
    We theoretically investigate an adjustable-radius magnetic storage ring for laser-cooled and Bose-condensed atoms. Additionally, we discuss a novel time-dependent variant of this and other ring traps. Time-orbiting ring traps provide a high optical access method for spin-flip loss prevention near a storage ring's circular magnetic field zero. Our scalable storage ring will allow one to probe the fundamental limits of condensate Sagnac interferometry.Comment: 5 pages, 3 figures. accepted in J Phys

    Protein folding using contact maps

    Full text link
    We present the development of the idea to use dynamics in the space of contact maps as a computational approach to the protein folding problem. We first introduce two important technical ingredients, the reconstruction of a three dimensional conformation from a contact map and the Monte Carlo dynamics in contact map space. We then discuss two approximations to the free energy of the contact maps and a method to derive energy parameters based on perceptron learning. Finally we present results, first for predictions based on threading and then for energy minimization of crambin and of a set of 6 immunoglobulins. The main result is that we proved that the two simple approximations we studied for the free energy are not suitable for protein folding. Perspectives are discussed in the last section.Comment: 29 pages, 10 figure

    Atom Chips

    Get PDF
    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems
    corecore