42 research outputs found

    Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux

    Get PDF
    BACKGROUND: Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP) oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. RESULTS: The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage), virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance) and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin). CONCLUSION: The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately

    Shared genetic aetiology of puberty timing between sexes and with health-related outcomes.

    Get PDF
    Understanding of the genetic regulation of puberty timing has come largely from studies of rare disorders and population-based studies in women. Here, we report the largest genomic analysis for puberty timing in 55,871 men, based on recalled age at voice breaking. Analysis across all genomic variants reveals strong genetic correlation (0.74, P=2.7 Γ— 10(-70)) between male and female puberty timing. However, some loci show sex-divergent effects, including directionally opposite effects between sexes at the SIM1/MCHR2 locus (Pheterogeneity=1.6 Γ— 10(-12)). We find five novel loci for puberty timing (P<5 Γ— 10(-8)), in addition to nine signals in men that were previously reported in women. Newly implicated genes include two retinoic acid-related receptors, RORB and RXRA, and two genes reportedly disrupted in rare disorders of puberty, LEPR and KAL1. Finally, we identify genetic correlations that indicate shared aetiologies in both sexes between puberty timing and body mass index, fasting insulin levels, lipid levels, type 2 diabetes and cardiovascular disease.This work was supported by the Medical Research Council [U106179472; MC_U106179472; U106179471; MC_U106179471] and the National Human Genome Research Institute of the National Institutes of Health (grant number R44HG006981 to 23andMe)This is the final version of the article. It was first available from NPG via http://dx.doi.org/10.1038/ncomms984

    Comparative phylogenomics of Streptococcus pneumoniae isolated from invasive disease and nasopharyngeal carriage from West Africans.

    Get PDF
    BACKGROUND: We applied comparative phylogenomics (whole genome comparisons of microbes using DNA microarrays combined with Bayesian-based phylogenies) to investigate S. pneumoniae isolates from West Africa, with the aim of providing insights into the pathogenicity and other features related to the biology of the organism. The strains investigated comprised a well defined collection of 58 invasive and carriage isolates that were sequenced typed and included eight different S. pneumoniae serotypes (1, 3, 5, 6A, 11, 14, 19 F and 23 F) of varying invasive disease potential. RESULTS: The core genome of the isolates was estimated to be 38% and was mainly represented by gene functional categories associated with housekeeping functions. Comparison of the gene content of invasive and carriage isolates identified at least eleven potential genes that may be important in virulence including surface proteins, transport proteins, transcription factors and hypothetical proteins. Thirteen accessory regions (ARs) were also identified and did not show any loci association with the eleven virulence genes. Intraclonal diversity (isolates of the same serotype and MLST but expressing different patterns of ARs) was observed among some clones including ST 1233 (serotype 5), ST 3404 (serotype 5) and ST 3321 (serotype 14). A constructed phylogenetic tree of the isolates showed a high level of heterogeneity consistent with the frequent S. pneumoniae recombination. Despite this, a homogeneous clustering of all the serotype 1 strains was observed. CONCLUSIONS: Comparative phylogenomics of invasive and carriage S. pneumoniae isolates identified a number of putative virulence determinants that may be important in the progression of S. pneumoniae from the carriage phase to invasive disease. Virulence determinants that contribute to S. pneumoniae pathogenicity are likely to be distributed randomly throughout its genome rather than being clustered in dedicated loci or islands. Compared to other S. pneumoniae serotypes, serotype 1 appears most genetically uniform
    corecore