162 research outputs found

    Advances of Peripheral Nerve Repair Techniques to Improve Hand Function: A Systematic Review of Literature

    Get PDF
    Concepts of neuronal damage and repair date back to ancient times. The research in this topic has been growing ever since and numerous nerve repair techniques have evolved throughout the years. Due to our greater understanding of nerve injuries and repair we now distinguish between central and peripheral nervous system. In this review, we have chosen to concentrate on peripheral nerve injuries and in particular those involving the hand. There are no reviews bringing together and summarizing the latest research evidence concerning the most up-to-date techniques used to improve hand function. Therefore, by identifying and evaluating all the published literature in this field, we have summarized all the available information about the advances in peripheral nerve techniques used to improve hand function. The most important ones are the use of resorbable poly[(R)-3-hydroxybutyrate] (PHB), epineural end-to-end suturing, graft repair, nerve transfer, side to side neurorrhaphy and end to side neurorrhaphy between median, radial and ulnar nerves, nerve transplant, nerve repair, external neurolysis and epineural sutures, adjacent neurotization without nerve suturing, Agee endoscopic operation, tourniquet induced anesthesia, toe transfer and meticulous intrinsic repair, free auto nerve grafting, use of distal based neurocutaneous flaps and tubulization. At the same time we found that the patient’s age, tension of repair, time of repair, level of injury and scar formation following surgery affect the prognosis. Despite the thorough findings of this systematic review we suggest that further research in this field is needed

    Adult Mesenchymal Stem Cells and Cell Surface Characterization - A Systematic Review of the Literature

    Get PDF
    Human adult mesenchymal stem cells (MSCs) were first identified by Friedenstein et al. when observing a group of cells that developed into fibroblastic colony forming cells (CFU-F). Ever since, the therapeutic uses and clinical applications of these cells have increased research and interest in this field. MSCs have the potential to be used in tissue engineering, gene therapy, transplants and tissue injuries. However, identifying these cells can be a challenge. Moreover, there are no articles bringing together and summarizing the cell surface markers of MSCs in adults. The purpose of this study is to summarize all the available information about the cell surface characterization of adult human MSCs by identifying and evaluating all the published literature in this field. We have found that the most commonly reported positive markers are CD105, CD90, CD44, CD73, CD29, CD13, CD34, CD146, CD106, CD54 and CD166. The most frequently reported negative markers are CD34, CD14, CD45, CD11b, CD49d, CD106, CD10 and CD31. A number of other cell surface markers including STRO-1, SH2, SH3, SH4, HLA-A, HLA-B, HLA-C, HLA-DR, HLA-I, DP, EMA, DQ (MHC Class II), CDIO5, Oct 4, Oct 4A, Nanog, Sox-2, TERT, Stat-3, fibroblast surface antigen, smooth muscle alpha-actin, vimentin, integrin subunits alpha4, alpha5, beta1, integrins alphavbeta3 and alphavbeta5 and ICAM-1 have also been reported. Nevertheless, there is great discrepancy and inconsistency concerning the information available on the cell surface profile of adult MSCs and we suggest that further research is needed in this field to overcome the problem

    Sources of Adult Mesenchymal Stem Cells Applicable for Musculoskeletal Applications - A Systematic Review of the Literature

    Get PDF
    Mesenchymal stem cells (MSCs) were first discovered by Friedenstein and his colleagues in 1976 from bone marrow. The unique property of these cells was their potential to develop into fibroblastic colony forming cells. Since Friedenstein’s discovery of these cells the interest in adult MSCs has been progressively growing. Nowadays MSCs are defined as undeveloped biological cells capable of proliferation, self renewal and regenerating tissues. All these properties of MSCs have been discovered in the past 35 years. MSCs can play a crucial role in tissue engineering, organogenesis, gene therapy, transplants as well as tissue injuries. These cells were mainly extracted from bone marrow but there have been additional sources for MSCs discovered in the laboratories including: muscle, dermis, trabecular bone, adipose tissue, periosteum, pericyte, blood, synovial membrane and so forth. The discovery of the alternative sources of MSCs helps widen the application of these cells in different areas of medicine. By way of illustration, they can be used in various therapeutic purposes such as tissue regeneration and repair in musculoskeletal diseases including osteonecrosis of femoral head, stimulating growth in children with osteogenesis imperfecta, disc regeneration, osteoarthritis and duchenne muscular dystrophy. In order to fully comprehend the characteristics and potential of MSCs future studies in this field are essential

    Sources of Adult Mesenchymal Stem Cells Applicable for Musculoskeletal Applications - A Systematic Review of the Literature

    Get PDF
    Mesenchymal stem cells (MSCs) were first discovered by Friedenstein and his colleagues in 1976 from bone marrow. The unique property of these cells was their potential to develop into fibroblastic colony forming cells. Since Friedenstein’s discovery of these cells the interest in adult MSCs has been progressively growing. Nowadays MSCs are defined as undeveloped biological cells capable of proliferation, self renewal and regenerating tissues. All these properties of MSCs have been discovered in the past 35 years. MSCs can play a crucial role in tissue engineering, organogenesis, gene therapy, transplants as well as tissue injuries. These cells were mainly extracted from bone marrow but there have been additional sources for MSCs discovered in the laboratories including: muscle, dermis, trabecular bone, adipose tissue, periosteum, pericyte, blood, synovial membrane and so forth. The discovery of the alternative sources of MSCs helps widen the application of these cells in different areas of medicine. By way of illustration, they can be used in various therapeutic purposes such as tissue regeneration and repair in musculoskeletal diseases including osteonecrosis of femoral head, stimulating growth in children with osteogenesis imperfecta, disc regeneration, osteoarthritis and duchenne muscular dystrophy. In order to fully comprehend the characteristics and potential of MSCs future studies in this field are essential

    Acute and chronic effects of Δ<sup>9</sup>-tetrahydrocannabinol (THC) on cerebral blood flow:A systematic review

    Get PDF
    Acute and chronic exposure to cannabis and its main psychoactive component, Δ 9-tetrahydrocannabinol (THC), is associated with changes in brain function and cerebral blood flow (CBF). We therefore sought to systematically review the literature on the effects of THC on CBF following PRISMA guidelines. Studies assessing the acute and chronic effects of THC on CBF, perfusion and volume were searched in the PubMed database between January 1972 and June 2019. We included thirty-four studies, which altogether investigated 1259 humans and 28 animals. Acute and chronic THC exposure have contrasting and regionally specific effects on CBF. While acute THC causes an overall increase in CBF in the anterior cingulate cortex, frontal cortex and insula, in a dose-dependent manner, chronic cannabis use results in an overall reduction in CBF, especially in the prefrontal cortex, which may be reversed upon prolonged abstinence from the drug. Future studies should focus on standardised methodology and longitudinal assessment to strengthen our understanding of the region-specific effects of THC on CBF and its clinical and functional significance. </p

    Stimulating meditation: a pre-registered randomised controlled experiment combining a single dose of the cognitive enhancer, modafinil, with brief mindfulness training

    Get PDF
    Background: Mindfulness-meditation has a variety of benefits on well-being. However, individuals with primary attentional impairments (e.g. attention deficit disorder) or attentional symptoms secondary to anxiety, depression or addiction, may be less likely to benefit, and require additional mindfulness-augmenting strategies. / Aims: To determine whether a single dose of the cognitive enhancer, modafinil, acutely increases subjective and behavioural indices of mindfulness, and augments brief mindfulness training. / Methods: A randomised, double-blind, placebo-controlled, 2 (drug: placebo, modafinil) × 2 (strategy: mindfulness, relaxation control) experiment was conducted. Seventy-nine meditation-naïve participants were assigned to: placebo–relaxation, placebo–mindfulness, modafinil–relaxation or modafinil–mindfulness. Pre-drug, post-drug and post-strategy state mindfulness, affect and autonomic activity, along with post-strategy sustained attention and mind-wandering were assessed within a single lab session. After the session, participants were instructed to practice their assigned behavioural strategy daily for one week, with no further drug administration, after which, follow-up measures were taken. / Results: As predicted, modafinil acutely increased state mindfulness and improved sustained attention. Differential acute strategy effects were found following mindfulness on autonomic activity but not state mindfulness. There were no strategy or drug effects on mind-wandering. However, exploratory analyses indicated that participants receiving modafinil engaged in more strategy practice across strategy conditions during follow-up. / Conclusions: Modafinil acutely mimicked the effects of brief mindfulness training on state mindfulness but did not enhance the effects of this training. Limitations of the current study, and recommendations for future research examining modafinil as an adjunct to mindfulness- (or relaxation-) based treatments are discussed

    Assessing the translational feasibility of pharmacological drug memory reconsolidation blockade with memantine in quitting smokers.

    Get PDF
    RATIONALE: Preclinical reconsolidation research offers the first realistic opportunity to pharmacologically weaken the maladaptive memory structures that support relapse in drug addicts. N-methyl D-aspartate receptor (NMDAR) antagonism is a highly effective means of blocking drug memory reconsolidation. However, no research using this approach exists in human addicts. OBJECTIVES: The objective of this study was to assess the potential and clinical outcomes of blocking the reconsolidation of cue-smoking memories with memantine in quitting smokers. METHODS: Fifty-nine dependent and motivated to quit smokers were randomised to one of three groups receiving the following: (1) memantine with or (2) without reactivation of associative cue-smoking memories or (3) reactivation with placebo on their target quit day in a double-blind manner. Participants aimed to abstain from smoking for as long as possible. Levels of smoking and FTND score were assessed prior to intervention and up to a year later. Primary outcome was latency to relapse. Subjective craving measures and attentional bias to smoking cues were assessed in-lab. RESULTS: All study groups successfully reduced their smoking up to 3 months. Memantine in combination with smoking memory reactivation did not affect any measure of smoking outcome, reactivity or attention capture to smoking cues. CONCLUSIONS: Brief exposure to smoking cues with memantine did not appear to weaken these memory traces. These findings could be due to insufficient reconsolidation blockade by memantine or failure of exposure to smoking stimuli to destabilise smoking memories. Research assessing the treatment potential of reconsolidation blockade in human addicts should focus on identification of tolerable drugs that reliably block reward memory reconsolidation and retrieval procedures that reliably destabilise strongly trained memories

    Acute effects of cannabinoids on addiction endophenotypes are moderated by genes encoding the CB1 receptor and FAAH enzyme

    Get PDF
    Understanding genetic factors that contribute to cannabis use disorder (CUD) is important, but to date, findings have been equivocal. Single‐nucleotide polymorphisms (SNPs) in the cannabinoid receptor 1 gene (CNR1; rs1049353 and rs806378) and fatty acid amide hydrolase (FAAH) gene (rs324420) have been implicated in CUD. Their relationship to addiction endophenotypes such as cannabis‐related state satiety, the salience of appetitive cues, and craving after acute cannabinoid administration has not been investigated. Forty‐eight cannabis users participated in a double‐blind, placebo‐controlled, four‐way crossover experiment where they were administered treatments in a randomized order via vaporization: placebo, Δ9‐tetrahydrocannabinol (THC) (8 mg), THC + cannabidiol (THC + CBD) (8 + 16 mg), and CBD (16 mg). Cannabis‐related state satiety, appetitive cue salience (cannabis and food), and cannabis craving were assessed each day. Participants were genotyped for rs1049353, rs806378, and rs324420. Results indicated that CNR1 rs1049353 GG carriers showed increased state satiety after THC/THC + CBD administration in comparison with placebo and reduced the salience of appetitive cues after THC in comparison with CBD administration; A carriers did not vary on either of these measures indicative of a vulnerability to CUD. CNR1 rs806378 CC carriers showed greater salience to appetitive cues in comparison with T carriers, but there was no evidence for changes in state satiety. FAAH rs324420 A carriers showed greater bias to appetitive cues after THC, in comparison with CC carriers. FAAH CC carriers showed reduced bias after THC in comparison with CBD. No SNPs modulated craving. These findings identify candidate neurocognitive mechanisms through which endocannabinoid system genetics may influence vulnerability to CUD
    corecore