4 research outputs found

    Surface engineering of ZnO nanorod for inverted organic solar cell

    Get PDF
    Crystallinity and band offset alignment of inorganic electron acceptor play a vital role in enhancing the device performance of inverted organic solar cell (IOSC). In this report, homogenous and vertically-aligned chemical treated ZnO nanorods (ZNR) were successfully grown on fluorine-doped tin oxide (FTO) substrate via a fully-solution method. It was found that the morphology of ZnO was fine-tuned from truncated surface to tubular structure under both of the anionic (KOH) and protonic (HCl) treatment. An extraordinary defect quenching phenomenon and hyperchromic energy band edge shift were observed in 0.1 M KOH-treated ZNR proven by the highest (0 0 2) peak detection and the lowest defect density. Compared with the pristine sample, the 0.1 M KOH-treated ZNR device showed a remarkable improvement in power conversion efficiency (PCE) up to 0.32%, signifying the effectiveness of anodic treatment. The robust correlation between the dependency of chemical treated ZNR and the device performance was established. This work elucidates a feasible method towards efficient IOSC devices development

    Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method

    Get PDF
    One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrier recombination between ZNRs and P3HT:PC61BM after the deposition of CdS QDs. The CdS QDs sensitized ZNRs reported herein exhibit great potential for advanced optoelectronic application

    Wear Resistance Improvement of Alloy Steel Using Laser Surface Treatment

    No full text
    Laser surface heat treatment has been accepted as an effective technique of surface hardening of steels because of the converging of the laser beam by the lens on a tiny spot with a diameter near the value of the laser wavelength, laser surface heat treatment has been an effective way to improve the surface properties of. There are many applications in the industrial of the laser technique. This concentrated a lot of energy into a tiny area, resulting in a lot of heat compared to traditional heating methods. Wear resistance is a surface phenomenon, although it is influenced by elements such as surface hardening, surface condition, and microstructure. In this research, the aNd-YAG laser was used to treat the surface of alloy steel in order to investigate the effects of irradiation on the microstructure, metal surface hardening, and wear resistance. Low surface roughness and increased surface microhardness have been achieved due to the laser pulse indicated (900 Hv). The wear resistance was discovered to be higher due to laser treatment with the selected conditions
    corecore