20 research outputs found
Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy
Superconducting persistent-current qubits are quantum-coherent artificial
atoms with multiple, tunable energy levels. In the presence of large-amplitude
harmonic excitation, the qubit state can be driven through one or more of the
constituent energy-level avoided crossings. The resulting
Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of
quantum-coherent phenomena. We review here three experimental works based on
LZS transitions: Mach-Zehnder-type interferometry between repeated LZS
transitions, microwave-induced cooling, and amplitude spectroscopy. These
experiments exhibit a remarkable agreement with theory, and are extensible to
other solid-state and atomic qubit modalities. We anticipate they will find
application to qubit state-preparation and control methods for quantum
information science and technology.Comment: 13 pages, 5 figure
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
The MAJORANA experiment: An ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the MAJORANA experiment, known as the DEMONSTRATOR, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak
Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10 -5eV2 and θ=34.4-1.2+1.3degrees
Low-background 3He Proportional Counters for Use in the Sudbury Neutrino Observatory
Current solar neutrino detectors measure a considerably lower flux of electron-flavor neutrinos than predicted by solar models. This could be an indication of neutrino oscillations, which would provide direct evidence that neutrinos have mass. The Sudbury Neutrino Observatory (SNO) was designed to detect all flavors of neutrinos, and will provide a rigorous test of this theory. The SNO detector's heavy water target gives it the unique ability to detect all non-sterile neutrino flavors via the neutral-current (NC) break-up of the deuteron. This NC interaction liberates a neutron which may be detected with an array of discrete 3He proportional counters. The strict radioactivity requirements imposed by the need for low backgrounds dictate the use of ultra-pure materials and processes in building these counters. Additionally, they must survive in the heavy water environment for several years. The design, construction, and testing of these unique counters are described. © 1999 IEEE