27 research outputs found

    Discussion: “Comparison of Statistical Methods for Assessing Spatial Correlations Between Maps of Different Arterial Properties” (Rowland, E. M., Mohamied, Y., Chooi, K. Y., Bailey, E. L., and Weinberg, P. D., 2015, ASME J. Biomech. Eng., 137(10), p. 101003): An Alternative Approach Using Segmentation Based on Local Hemodynamics

    Get PDF
    The biological response of living arteries to mechanical forces is an important component of the atherosclerotic process and is responsible, at least in part, for the well-recognized spatial variation in atherosusceptibility in man. Experiments to elucidate this response often generate maps of force and response variables over the arterial surface, from which the force–response relationship is sought. Rowland et al. discussed several statistical approaches to the spatial autocorrelation that confounds the analysis of such maps and applied them to maps of hemodynamic stress and vascular response obtained by averaging these variables in multiple animals. Here, we point out an alternative approach, in which discrete surface regions are defined by the hemodynamic stress levels they experience, and the stress and response in each animal are treated separately. This approach, applied properly, is insensitive to autocorrelation and less sensitive to the effect of confounding hemodynamic variables. The analysis suggests an inverse relation between permeability and shear that differs from that in Rowland et al. Possible sources of this difference are suggested

    X-ray and MR contrast bearing nanoparticles enhance the therapeutic response of image-guided radiation therapy for oral cancer

    Get PDF
    INTRODUCTION: Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models. METHODS: PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery. The radiation therapy enhancement mechanism was investigated. RESULTS: Theranostic nanoparticles demonstrated both X-ray/magnetic resonance contrast in a dose-dependent manner. Magnetic resonance images depicted optimal tumor-to-background uptake at 4 h post injection. Theranostic nanoparticle + Radiation treated rats experienced reduced tumor growth compared to controls, and reduction in lung metastasis. CONCLUSIONS: Theranostic nanoparticles enable preprocedure radiotherapy planning, as well as enhance radiation treatment efficacy for head and neck tumors

    Diagnosis of Partial Body Radiation Exposure in Mice Using Peripheral Blood Gene Expression Profiles

    Get PDF
    In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79–100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16–43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation

    Gene Expression Signatures of Radiation Response Are Specific, Durable and Accurate in Mice and Humans

    Get PDF
    Background: Previous work has demonstrated the potential for peripheral blood (PB) gene expression profiling for the detection of disease or environmental exposures. Methods and Findings: We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy). A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100 % specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90 % and 81%, respectively. Conclusions: We conclude that PB gene expression profiles can be identified in mice and humans that are accurate i

    Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure

    No full text
    As the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles. In keeping with its organ and tissue specific functionality, the molecular and cellular response of the endothelium to radiation injury varies by organ. Therefore, in the development of medical countermeasures for multi-organ injury, it is necessary to consider organ and tissue-specific endothelial responses to both injury and candidate mitigators. The purpose of this review is to summarize the pathogenesis of endothelial dysfunction following total or near total body irradiation exposure at the level of individual radiosensitive organs

    MODEL-BASED SHEAR STRESS GRADIENT IN REALISTIC VASCULAR FLOWS AND ITS RELATION TO ARTERIAL MACROMOLECULAR PERMEABILITY

    No full text
    ABSTRACT Evans blue dye (EBD) was injected into the carotid arteries of three anesthetized pigs and allowed to circulate for 90 minutes. At the conclusion of the 90-minute period, the animals were sacrificed and injection casts of the infrarenal aorta and iliac-femoral arteries were prepared. The casts with their surrounding arteries were removed and immersed in fixative. After fixation, the EBD-stained vessels were separated from the casts, which were used to construct computational meshes for simulation of the flow fields and wall shear stress distributions that had existed in the casted regions during the experiments. The inlet flow waves and flow partitions were based on flow measurements performed during each experiment. Based on a conceptual model of the relation between shear stress nonuniformity and permeability increase, the spatial and angular variation of the gradient of the time-average shear stress at the walls of the external iliac arteries was found from the computational fluid dynamic simulations for each experiment. Using affine transformations, the gradient and time-average shear stress results, and the EBD optical density distributions, were mapped to a common template, allowing pixel-by-pixel correlations of the hemodynamic stress parameters and local permeability. The results suggest that both shear stress gradient and time-average shear play a role in determining vascular permeability to macromolecules
    corecore