5,441 research outputs found

    Spin injection from perpendicular magnetized ferromagnetic ÎŽ\delta-MnGa into (Al,Ga)As heterostructures

    Full text link
    Electrical spin injection from ferromagnetic ÎŽ\delta-MnGa into an (Al,Ga)As p-i-n light emitting diode (LED) is demonstrated. The ÎŽ\delta-MnGa layers show strong perpendicular magnetocrystalline anisotropy, enabling detection of spin injection at remanence without an applied magnetic field. The bias and temperature dependence of the spin injection are found to be qualitatively similar to Fe-based spin LED devices. A Hanle effect is observed and demonstrates complete depolarization of spins in the semiconductor in a transverse magnetic field.Comment: 4 pages, 3 figure

    Comparison of Zn_{1-x}Mn_xTe/ZnTe multiple-quantum wells and quantum dots by below-bandgap photomodulated reflectivity

    Full text link
    Large-area high density patterns of quantum dots with a diameter of 200 nm have been prepared from a series of four Zn_{0.93}Mn_{0.07}Te/ZnTe multiple quantum well structures of different well width (4 nm, 6 nm, 8 nm and 10 nm) by electron beam lithography followed by Ar+ ion beam etching. Below-bandgap photomodulated reflectivity spectra of the quantum dot samples and the parent heterostructures were then recorded at 10 K and the spectra were fitted to extract the linewidths and the energy positions of the excitonic transitions in each sample. The fitted results are compared to calculations of the transition energies in which the different strain states in the samples are taken into account. We show that the main effect of the nanofabrication process is a change in the strain state of the quantum dot samples compared to the parent heterostructures. The quantum dot pillars turn out to be freestanding, whereas the heterostructures are in a good approximation strained to the ZnTe lattice constant. The lateral size of the dots is such that extra confinement effects are not expected or observed.Comment: 23 pages, LaTeX2e (amsmath, epsfig), 7 EPS figure

    Optimal General Matchings

    Full text link
    Given a graph G=(V,E)G=(V,E) and for each vertex v∈Vv \in V a subset B(v)B(v) of the set {0,1,
,dG(v)}\{0,1,\ldots, d_G(v)\}, where dG(v)d_G(v) denotes the degree of vertex vv in the graph GG, a BB-factor of GG is any set F⊆EF \subseteq E such that dF(v)∈B(v)d_F(v) \in B(v) for each vertex vv, where dF(v)d_F(v) denotes the number of edges of FF incident to vv. The general factor problem asks the existence of a BB-factor in a given graph. A set B(v)B(v) is said to have a {\em gap of length} pp if there exists a natural number k∈B(v)k \in B(v) such that k+1,
,k+p∉B(v)k+1, \ldots, k+p \notin B(v) and k+p+1∈B(v)k+p+1 \in B(v). Without any restrictions the general factor problem is NP-complete. However, if no set B(v)B(v) contains a gap of length greater than 11, then the problem can be solved in polynomial time and Cornuejols \cite{Cor} presented an algorithm for finding a BB-factor, if it exists. In this paper we consider a weighted version of the general factor problem, in which each edge has a nonnegative weight and we are interested in finding a BB-factor of maximum (or minimum) weight. In particular, this version comprises the minimum/maximum cardinality variant of the general factor problem, where we want to find a BB-factor having a minimum/maximum number of edges. We present an algorithm for the maximum/minimum weight BB-factor for the case when no set B(v)B(v) contains a gap of length greater than 11. This also yields the first polynomial time algorithm for the maximum/minimum cardinality BB-factor for this case

    Softening of the insulating phase near Tc for the photo-induced insulator-to-metal phase transition in vanadium dioxide

    Full text link
    We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.Comment: accepted for publication in Physical Review Letter

    35.4 T field generated using a layer-wound superconducting coil made of (RE)Ba2Cu3O7-x (RE = Rare Earth) coated conductor

    Full text link
    To explore the limits of layer wound (RE)Ba2Cu3O7-x (REBCO, RE = Rare Earth) coils in a high magnetic field environment > 30 T, a series of small insert coils have been built and characterized in background fields. One of the coils repeatedly reached 35.4 T using a single ~100 m length of REBCO tape wet wound with epoxy and nested in a 31 T background magnet. The coil was quenched safely several times without degradation. Contributing to the success of this coil was the introduction of a thin polyester film that surrounded the conductor. This approach introduces a weak circumferential plane in the coil pack that prevents conductor delamination that has caused degradation of several epoxy impregnated coils previously made by this and other groups.Comment: 7 pages, 3 figures, 1 tabl

    Possible explanations for different surface quality in laser cutting with 1 micron and 10 microns beams

    Get PDF
    In laser cutting of thick steel sheets, quality difference is observed between cut surfaces obtained with 1 micron and 10 micron laser beams. This paper investigates physical mechanisms for this interesting and important problem of the wavelength dependence. First, striation generation process is described, based on a 3D structure of melt flow on a kerf front, which was revealed for the first time by our recent experimental observations. Two fundamental processes are suggested to explain the difference in the cut surface quality: destabilization of the melt flow in the central part of the kerf front and downward displacement of discrete melt accumulations along the side parts of the front. Then each of the processes is analyzed using a simplified analytical model. The results show that in both processes, different angular dependence of the absorptivity of the laser beam can result in the quality difference. Finally we propose use of radial polarization to improve the quality with the 1 micron wavelength

    Corrugated Silicon Platelet Feed Horn Array for CMB Polarimetry at 150 GHz

    Full text link
    Next generation cosmic microwave background (CMB) polarization anisotropy measurements will feature focal plane arrays with more than 600 millimeter-wave detectors. We make use of high-resolution photolithography and wafer-scale etch tools to build planar arrays of corrugated platelet feeds in silicon with highly symmetric beams, low cross-polarization and low side lobes. A compact Au-plated corrugated Si feed designed for 150 GHz operation exhibited performance equivalent to that of electroformed feeds: ~-0.2 dB insertion loss, <-20 dB return loss from 120 GHz to 170 GHz, <-25 dB side lobes and <-23 dB cross-polarization. We are currently fabricating a 50 mm diameter array with 84 horns consisting of 33 Si platelets as a prototype for the SPTpol and ACTpol telescopes. Our fabrication facilities permit arrays up to 150 mm in diameter.Comment: 12 pages; SPIE proceedings for Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (Conference 7741, June 2010, San Diego, CA, USA

    Global temporal registration of multiple non-rigid surface sequences

    Get PDF
    In this paper we consider the problem of aligning multiple non-rigid surface mesh sequences into a single temporally consistent representation of the shape and motion. A global alignment graph structure is introduced which uses shape similarity to identify frames for inter-sequence registration. Graph optimisation is performed to minimise the total non-rigid deformation required to register the input sequences into a common structure. The resulting global alignment ensures that all input sequences are resampled with a common mesh structure which preserves the shape and temporal correspondence. Results demonstrate temporally consistent representation of several public databases of mesh sequences for multiple people performing a variety of motions with loose clothing and hair
    • 

    corecore